1. Using schema properties to configure custom resources

Custom resources offer a flexible way to manage and fine-tune the operation of Strimzi components using configuration properties. This reference guide describes common configuration properties that apply to multiple custom resources, as well as the configuration properties available for each custom resource schema available with Strimzi. Where appropriate, expanded descriptions of properties and examples of how they are configured are provided.

The properties defined for each schema provide a structured and organized way to specify configuration for the custom resources. Whether it’s adjusting resource allocation or specifying access controls, the properties in the schemas allow for a granular level of configuration. For example, you can use the properties of the KafkaClusterSpec schema to specify the type of storage for a Kafka cluster or add listeners that provide secure access to Kafka brokers.

Some property options within a schema may be constrained, as indicated in the property descriptions. These constraints define specific options or limitations on the values that can be assigned to those properties. Constraints ensure that the custom resources are configured with valid and appropriate values.

2. Common configuration properties

Use Common configuration properties to configure Strimzi custom resources. You add common configuration properties to a custom resource like any other supported configuration for that resource.

2.1. replicas

Use the replicas property to configure replicas.

The type of replication depends on the resource.

  • KafkaTopic uses a replication factor to configure the number of replicas of each partition within a Kafka cluster.

  • Kafka components use replicas to configure the number of pods in a deployment to provide better availability and scalability.

Note
When running a Kafka component on Kubernetes it may not be necessary to run multiple replicas for high availability. When the node where the component is deployed crashes, Kubernetes will automatically reschedule the Kafka component pod to a different node. However, running Kafka components with multiple replicas can provide faster failover times as the other nodes will be up and running.

2.2. bootstrapServers

Use the bootstrapServers property to configure a list of bootstrap servers.

The bootstrap server lists can refer to Kafka clusters that are not deployed in the same Kubernetes cluster. They can also refer to a Kafka cluster not deployed by Strimzi.

If on the same Kubernetes cluster, each list must ideally contain the Kafka cluster bootstrap service which is named CLUSTER-NAME-kafka-bootstrap and a port number. If deployed by Strimzi but on different Kubernetes clusters, the list content depends on the approach used for exposing the clusters (routes, ingress, nodeports or loadbalancers).

When using Kafka with a Kafka cluster not managed by Strimzi, you can specify the bootstrap servers list according to the configuration of the given cluster.

2.3. ssl (supported TLS versions and cipher suites)

You can incorporate SSL configuration and cipher suite specifications to further secure TLS-based communication between your client application and a Kafka cluster. In addition to the standard TLS configuration, you can specify a supported TLS version and enable cipher suites in the configuration for the Kafka broker. You can also add the configuration to your clients if you wish to limit the TLS versions and cipher suites they use. The configuration on the client must only use protocols and cipher suites that are enabled on the broker.

A cipher suite is a set of security mechanisms for secure connection and data transfer. For example, the cipher suite TLS_AES_256_GCM_SHA384 is composed of the following mechanisms, which are used in conjunction with the TLS protocol:

  • AES (Advanced Encryption Standard) encryption (256-bit key)

  • GCM (Galois/Counter Mode) authenticated encryption

  • SHA384 (Secure Hash Algorithm) data integrity protection

The combination is encapsulated in the TLS_AES_256_GCM_SHA384 cipher suite specification.

The ssl.enabled.protocols property specifies the available TLS versions that can be used for secure communication between the cluster and its clients. The ssl.protocol property sets the default TLS version for all connections, and it must be chosen from the enabled protocols. Use the ssl.endpoint.identification.algorithm property to enable or disable hostname verification (configurable only in components based on Kafka clients - Kafka Connect, MirrorMaker 1/2, and Kafka Bridge).

Example SSL configuration
# ...
config:
  ssl.cipher.suites: TLS_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 # (1)
  ssl.enabled.protocols: TLSv1.3, TLSv1.2 # (2)
  ssl.protocol: TLSv1.3 # (3)
  ssl.endpoint.identification.algorithm: HTTPS # (4)
# ...
  1. Cipher suite specifications enabled.

  2. TLS versions supported.

  3. Default TLS version is TLSv1.3. If a client only supports TLSv1.2, it can still connect to the broker and communicate using that supported version, and vice versa if the configuration is on the client and the broker only supports TLSv1.2.

  4. Hostname verification is enabled by setting to HTTPS. An empty string disables the verification.

2.4. trustedCertificates

Having set tls to configure TLS encryption, use the trustedCertificates property to provide a list of secrets with key names under which the certificates are stored in X.509 format.

You can use the secrets created by the Cluster Operator for the Kafka cluster, or you can create your own TLS certificate file, then create a Secret from the file:

kubectl create secret generic MY-SECRET \
--from-file=MY-TLS-CERTIFICATE-FILE.crt
Example TLS encryption configuration
tls:
  trustedCertificates:
    - secretName: my-cluster-cluster-cert
      certificate: ca.crt
    - secretName: my-cluster-cluster-cert
      certificate: ca2.crt

If certificates are stored in the same secret, it can be listed multiple times.

If you want to enable TLS encryption, but use the default set of public certification authorities shipped with Java, you can specify trustedCertificates as an empty array:

Example of enabling TLS with the default Java certificates
tls:
  trustedCertificates: []

For information on configuring mTLS authentication, see the KafkaClientAuthenticationTls schema reference.

2.5. resources

Configure resource requests and limits to control resources for Strimzi containers. You can specify requests and limits for memory and cpu resources. The requests should be enough to ensure a stable performance of Kafka.

How you configure resources in a production environment depends on a number of factors. For example, applications are likely to be sharing resources in your Kubernetes cluster.

For Kafka, the following aspects of a deployment can impact the resources you need:

  • Throughput and size of messages

  • The number of network threads handling messages

  • The number of producers and consumers

  • The number of topics and partitions

The values specified for resource requests are reserved and always available to the container. Resource limits specify the maximum resources that can be consumed by a given container. The amount between the request and limit is not reserved and might not be always available. A container can use the resources up to the limit only when they are available. Resource limits are temporary and can be reallocated.

Resource requests and limits

Boundaries of a resource requests and limits

If you set limits without requests or vice versa, Kubernetes uses the same value for both. Setting equal requests and limits for resources guarantees quality of service, as Kubernetes will not kill containers unless they exceed their limits.

You can configure resource requests and limits for one or more supported resources.

Example resource configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    #...
    resources:
      requests:
        memory: 64Gi
        cpu: "8"
      limits:
        memory: 64Gi
        cpu: "12"
  entityOperator:
    #...
    topicOperator:
      #...
      resources:
        requests:
          memory: 512Mi
          cpu: "1"
        limits:
          memory: 512Mi
          cpu: "1"

Resource requests and limits for the Topic Operator and User Operator are set in the Kafka resource.

If the resource request is for more than the available free resources in the Kubernetes cluster, the pod is not scheduled.

Note
Strimzi uses the Kubernetes syntax for specifying memory and cpu resources. For more information about managing computing resources on Kubernetes, see Managing Compute Resources for Containers.
Memory resources

When configuring memory resources, consider the total requirements of the components.

Kafka runs inside a JVM and uses an operating system page cache to store message data before writing to disk. The memory request for Kafka should fit the JVM heap and page cache. You can configure the jvmOptions property to control the minimum and maximum heap size.

Other components don’t rely on the page cache. You can configure memory resources without configuring the jvmOptions to control the heap size.

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes. Use the following suffixes in the specification:

  • M for megabytes

  • G for gigabytes

  • Mi for mebibytes

  • Gi for gibibytes

Example resources using different memory units
# ...
resources:
  requests:
    memory: 512Mi
  limits:
    memory: 2Gi
# ...

For more details about memory specification and additional supported units, see Meaning of memory.

CPU resources

A CPU request should be enough to give a reliable performance at any time. CPU requests and limits are specified as cores or millicpus/millicores.

CPU cores are specified as integers (5 CPU core) or decimals (2.5 CPU core). 1000 millicores is the same as 1 CPU core.

Example CPU units
# ...
resources:
  requests:
    cpu: 500m
  limits:
    cpu: 2.5
# ...

The computing power of 1 CPU core may differ depending on the platform where Kubernetes is deployed.

For more information on CPU specification, see Meaning of CPU.

2.6. image

Use the image property to configure the container image used by the component.

Overriding container images is recommended only in special situations where you need to use a different container registry or a customized image.

For example, if your network does not allow access to the container repository used by Strimzi, you can copy the Strimzi images or build them from the source. However, if the configured image is not compatible with Strimzi images, it might not work properly.

A copy of the container image might also be customized and used for debugging.

You can specify which container image to use for a component using the image property in the following resources:

  • Kafka.spec.kafka

  • Kafka.spec.zookeeper

  • Kafka.spec.entityOperator.topicOperator

  • Kafka.spec.entityOperator.userOperator

  • Kafka.spec.entityOperator.tlsSidecar

  • Kafka.spec.cruiseControl

  • Kafka.spec.kafkaExporter

  • Kafka.spec.kafkaBridge

  • KafkaConnect.spec

  • KafkaMirrorMaker.spec

  • KafkaMirrorMaker2.spec

  • KafkaBridge.spec

Note
Changing the Kafka image version does not automatically update the image versions for other Kafka components, such as Kafka Exporter. These components are not version dependent, so no additional configuration is necessary when updating the Kafka image version.

Configuring the image property for Kafka, Kafka Connect, and Kafka MirrorMaker

Kafka, Kafka Connect, and Kafka MirrorMaker support multiple versions of Kafka. Each component requires its own image. The default images for the different Kafka versions are configured in the following environment variables:

  • STRIMZI_KAFKA_IMAGES

  • STRIMZI_KAFKA_CONNECT_IMAGES

  • STRIMZI_KAFKA_MIRROR_MAKER2_IMAGES

  • (Deprecated) STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

These environment variables contain mappings between Kafka versions and corresponding images. The mappings are used together with the image and version properties to determine the image used:

  • If neither image nor version are given in the custom resource, the version defaults to the Cluster Operator’s default Kafka version, and the image used is the one corresponding to this version in the environment variable.

  • If image is given but version is not, then the given image is used and the version is assumed to be the Cluster Operator’s default Kafka version.

  • If version is given but image is not, then the image that corresponds to the given version in the environment variable is used.

  • If both version and image are given, then the given image is used. The image is assumed to contain a Kafka image with the given version.

The image and version for the components can be configured in the following properties:

  • For Kafka in spec.kafka.image and spec.kafka.version.

  • For Kafka Connect and Kafka MirrorMaker in spec.image and spec.version.

Warning
It is recommended to provide only the version and leave the image property unspecified. This reduces the chance of making a mistake when configuring the custom resource. If you need to change the images used for different versions of Kafka, it is preferable to configure the Cluster Operator’s environment variables.

Configuring the image property in other resources

For the image property in the custom resources for other components, the given value is used during deployment. If the image property is not set, the container image specified as an environment variable in the Cluster Operator configuration is used. If an image name is not defined in the Cluster Operator configuration, then a default value is used.

For more information on image environment variables, see Configuring the Cluster Operator.

Table 1. Image environment variables and defaults
Component Environment variable Default image

Topic Operator

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

quay.io/strimzi/operator:0.40.0

User Operator

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

quay.io/strimzi/operator:0.40.0

Entity Operator TLS sidecar

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

quay.io/strimzi/kafka:0.40.0-kafka-3.7.0

Kafka Exporter

STRIMZI_DEFAULT_KAFKA_EXPORTER_IMAGE

quay.io/strimzi/kafka:0.40.0-kafka-3.7.0

Cruise Control

STRIMZI_DEFAULT_CRUISE_CONTROL_IMAGE

quay.io/strimzi/kafka:0.40.0-kafka-3.7.0

Kafka Bridge

STRIMZI_DEFAULT_KAFKA_BRIDGE_IMAGE

quay.io/strimzi/kafka-bridge:0.28.0

Kafka initializer

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

quay.io/strimzi/operator:0.40.0

Example container image configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    image: my-org/my-image:latest
    # ...
  zookeeper:
    # ...

2.7. livenessProbe and readinessProbe healthchecks

Use the livenessProbe and readinessProbe properties to configure healthcheck probes supported in Strimzi.

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe fails, Kubernetes assumes that the application is not healthy and attempts to fix it.

For more details about the probes, see Configure Liveness and Readiness Probes.

Both livenessProbe and readinessProbe support the following options:

  • initialDelaySeconds

  • timeoutSeconds

  • periodSeconds

  • successThreshold

  • failureThreshold

Example of liveness and readiness probe configuration
# ...
readinessProbe:
  initialDelaySeconds: 15
  timeoutSeconds: 5
livenessProbe:
  initialDelaySeconds: 15
  timeoutSeconds: 5
# ...

For more information about the livenessProbe and readinessProbe options, see the Probe schema reference.

2.8. metricsConfig

Use the metricsConfig property to enable and configure Prometheus metrics.

The metricsConfig property contains a reference to a ConfigMap that has additional configurations for the Prometheus JMX Exporter. Strimzi supports Prometheus metrics using Prometheus JMX exporter to convert the JMX metrics supported by Apache Kafka and ZooKeeper to Prometheus metrics.

To enable Prometheus metrics export without further configuration, you can reference a ConfigMap containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key. When referencing an empty file, all metrics are exposed as long as they have not been renamed.

Example ConfigMap with metrics configuration for Kafka
kind: ConfigMap
apiVersion: v1
metadata:
  name: my-configmap
data:
  my-key: |
    lowercaseOutputName: true
    rules:
    # Special cases and very specific rules
    - pattern: kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
      name: kafka_server_$1_$2
      type: GAUGE
      labels:
       clientId: "$3"
       topic: "$4"
       partition: "$5"
    # further configuration
Example metrics configuration for Kafka
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    metricsConfig:
      type: jmxPrometheusExporter
      valueFrom:
        configMapKeyRef:
          name: my-config-map
          key: my-key
    # ...
  zookeeper:
    # ...

When metrics are enabled, they are exposed on port 9404.

When the metricsConfig (or deprecated metrics) property is not defined in the resource, the Prometheus metrics are disabled.

For more information about setting up and deploying Prometheus and Grafana, see Introducing Metrics to Kafka.

2.9. jvmOptions

The following Strimzi components run inside a Java Virtual Machine (JVM):

  • Apache Kafka

  • Apache ZooKeeper

  • Apache Kafka Connect

  • Apache Kafka MirrorMaker

  • Strimzi Kafka Bridge

To optimize their performance on different platforms and architectures, you configure the jvmOptions property in the following resources:

  • Kafka.spec.kafka

  • Kafka.spec.zookeeper

  • Kafka.spec.entityOperator.userOperator

  • Kafka.spec.entityOperator.topicOperator

  • Kafka.spec.cruiseControl

  • KafkaNodePool.spec

  • KafkaConnect.spec

  • KafkaMirrorMaker.spec

  • KafkaMirrorMaker2.spec

  • KafkaBridge.spec

You can specify the following options in your configuration:

-Xms

Minimum initial allocation heap size when the JVM starts

-Xmx

Maximum heap size

-XX

Advanced runtime options for the JVM

javaSystemProperties

Additional system properties

gcLoggingEnabled

Enables garbage collector logging

Note
The units accepted by JVM settings, such as -Xmx and -Xms, are the same units accepted by the JDK java binary in the corresponding image. Therefore, 1g or 1G means 1,073,741,824 bytes, and Gi is not a valid unit suffix. This is different from the units used for memory requests and limits, which follow the Kubernetes convention where 1G means 1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes.
-Xms and -Xmx options

In addition to setting memory request and limit values for your containers, you can use the -Xms and -Xmx JVM options to set specific heap sizes for your JVM. Use the -Xms option to set an initial heap size and the -Xmx option to set a maximum heap size.

Specify heap size to have more control over the memory allocated to your JVM. Heap sizes should make the best use of a container’s memory limit (and request) without exceeding it. Heap size and any other memory requirements need to fit within a specified memory limit. If you don’t specify heap size in your configuration, but you configure a memory resource limit (and request), the Cluster Operator imposes default heap sizes automatically. The Cluster Operator sets default maximum and minimum heap values based on a percentage of the memory resource configuration.

The following table shows the default heap values.

Table 2. Default heap settings for components
Component Percent of available memory allocated to the heap Maximum limit

Kafka

50%

5 GB

ZooKeeper

75%

2 GB

Kafka Connect

75%

None

MirrorMaker 2

75%

None

MirrorMaker

75%

None

Cruise Control

75%

None

Kafka Bridge

50%

31 Gi

If a memory limit (and request) is not specified, a JVM’s minimum heap size is set to 128M. The JVM’s maximum heap size is not defined to allow the memory to increase as needed. This is ideal for single node environments in test and development.

Setting an appropriate memory request can prevent the following:

  • Kubernetes killing a container if there is pressure on memory from other pods running on the node.

  • Kubernetes scheduling a container to a node with insufficient memory. If -Xms is set to -Xmx, the container will crash immediately; if not, the container will crash at a later time.

In this example, the JVM uses 2 GiB (=2,147,483,648 bytes) for its heap. Total JVM memory usage can be a lot more than the maximum heap size.

Example -Xmx and -Xms configuration
# ...
jvmOptions:
  "-Xmx": "2g"
  "-Xms": "2g"
# ...

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to allocate memory after startup, at the cost of possibly allocating more heap than is really needed.

Important
Containers performing lots of disk I/O, such as Kafka broker containers, require available memory for use as an operating system page cache. For such containers, the requested memory should be significantly higher than the memory used by the JVM.
-XX option

-XX options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example -XX configuration
jvmOptions:
  "-XX":
    "UseG1GC": true
    "MaxGCPauseMillis": 20
    "InitiatingHeapOccupancyPercent": 35
    "ExplicitGCInvokesConcurrent": true
JVM options resulting from the -XX configuration
-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC
Note
When no -XX options are specified, the default Apache Kafka configuration of KAFKA_JVM_PERFORMANCE_OPTS is used.
javaSystemProperties

javaSystemProperties are used to configure additional Java system properties, such as debugging utilities.

Example javaSystemProperties configuration
jvmOptions:
  javaSystemProperties:
    - name: javax.net.debug
      value: ssl

For more information about the jvmOptions, see the JvmOptions schema reference.

2.10. Garbage collector logging

The jvmOptions property also allows you to enable and disable garbage collector (GC) logging. GC logging is disabled by default. To enable it, set the gcLoggingEnabled property as follows:

Example GC logging configuration
# ...
jvmOptions:
  gcLoggingEnabled: true
# ...

3. Kafka schema reference

Property Property type Description

spec

KafkaSpec

The specification of the Kafka and ZooKeeper clusters, and Topic Operator.

status

KafkaStatus

The status of the Kafka and ZooKeeper clusters, and Topic Operator.

4. KafkaSpec schema reference

Used in: Kafka

Property Property type Description

kafka

KafkaClusterSpec

Configuration of the Kafka cluster.

zookeeper

ZookeeperClusterSpec

Configuration of the ZooKeeper cluster. This section is required when running a ZooKeeper-based Apache Kafka cluster.

entityOperator

EntityOperatorSpec

Configuration of the Entity Operator.

clusterCa

CertificateAuthority

Configuration of the cluster certificate authority.

clientsCa

CertificateAuthority

Configuration of the clients certificate authority.

cruiseControl

CruiseControlSpec

Configuration for Cruise Control deployment. Deploys a Cruise Control instance when specified.

jmxTrans

JmxTransSpec

The jmxTrans property has been deprecated. JMXTrans is deprecated and related resources removed in Strimzi 0.35.0. As of Strimzi 0.35.0, JMXTrans is not supported anymore and this option is ignored.

kafkaExporter

KafkaExporterSpec

Configuration of the Kafka Exporter. Kafka Exporter can provide additional metrics, for example lag of consumer group at topic/partition.

maintenanceTimeWindows

string array

A list of time windows for maintenance tasks (that is, certificates renewal). Each time window is defined by a cron expression.

5. KafkaClusterSpec schema reference

Used in: KafkaSpec

Configures a Kafka cluster.

5.1. listeners

Use the listeners property to configure listeners to provide access to Kafka brokers.

Example configuration of a plain (unencrypted) listener without authentication
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
    listeners:
      - name: plain
        port: 9092
        type: internal
        tls: false
    # ...
  zookeeper:
    # ...

5.2. config

Use the config properties to configure Kafka broker options as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Apache Kafka documentation.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Security (encryption, authentication, and authorization)

  • Listener configuration

  • Broker ID configuration

  • Configuration of log data directories

  • Inter-broker communication

  • ZooKeeper connectivity

Properties with the following prefixes cannot be set:

  • advertised.

  • authorizer.

  • broker.

  • controller

  • cruise.control.metrics.reporter.bootstrap.

  • cruise.control.metrics.topic

  • host.name

  • inter.broker.listener.name

  • listener.

  • listeners.

  • log.dir

  • password.

  • port

  • process.roles

  • sasl.

  • security.

  • servers,node.id

  • ssl.

  • super.user

  • zookeeper.clientCnxnSocket

  • zookeeper.connect

  • zookeeper.set.acl

  • zookeeper.ssl

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to Kafka, including the following exceptions to the options configured by Strimzi:

  • Any ssl configuration for supported TLS versions and cipher suites

  • Configuration for the zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing a ZooKeeper connection

  • Cruise Control metrics properties:

    • cruise.control.metrics.topic.num.partitions

    • cruise.control.metrics.topic.replication.factor

    • cruise.control.metrics.topic.retention.ms

    • cruise.control.metrics.topic.auto.create.retries

    • cruise.control.metrics.topic.auto.create.timeout.ms

    • cruise.control.metrics.topic.min.insync.replicas

  • Controller properties:

    • controller.quorum.election.backoff.max.ms

    • controller.quorum.election.timeout.ms

    • controller.quorum.fetch.timeout.ms

Example Kafka broker configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    config:
      num.partitions: 1
      num.recovery.threads.per.data.dir: 1
      default.replication.factor: 3
      offsets.topic.replication.factor: 3
      transaction.state.log.replication.factor: 3
      transaction.state.log.min.isr: 1
      log.retention.hours: 168
      log.segment.bytes: 1073741824
      log.retention.check.interval.ms: 300000
      num.network.threads: 3
      num.io.threads: 8
      socket.send.buffer.bytes: 102400
      socket.receive.buffer.bytes: 102400
      socket.request.max.bytes: 104857600
      group.initial.rebalance.delay.ms: 0
      zookeeper.connection.timeout.ms: 6000
    # ...

5.3. brokerRackInitImage

When rack awareness is enabled, Kafka broker pods use init container to collect the labels from the Kubernetes cluster nodes. The container image used for this container can be configured using the brokerRackInitImage property. When the brokerRackInitImage field is missing, the following images are used in order of priority:

  1. Container image specified in STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment variable in the Cluster Operator configuration.

  2. quay.io/strimzi/operator:0.40.0 container image.

Example brokerRackInitImage configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    rack:
      topologyKey: topology.kubernetes.io/zone
    brokerRackInitImage: my-org/my-image:latest
    # ...
Note
Overriding container images is recommended only in special situations, where you need to use a different container registry. For example, because your network does not allow access to the container registry used by Strimzi. In this case, you should either copy the Strimzi images or build them from the source. If the configured image is not compatible with Strimzi images, it might not work properly.

5.4. logging

Kafka has its own configurable loggers, which include the following:

  • log4j.logger.org.I0Itec.zkclient.ZkClient

  • log4j.logger.org.apache.zookeeper

  • log4j.logger.kafka

  • log4j.logger.org.apache.kafka

  • log4j.logger.kafka.request.logger

  • log4j.logger.kafka.network.Processor

  • log4j.logger.kafka.server.KafkaApis

  • log4j.logger.kafka.network.RequestChannel$

  • log4j.logger.kafka.controller

  • log4j.logger.kafka.log.LogCleaner

  • log4j.logger.state.change.logger

  • log4j.logger.kafka.authorizer.logger

Kafka uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  kafka:
    # ...
    logging:
      type: inline
      loggers:
        kafka.root.logger.level: INFO
        log4j.logger.kafka.coordinator.transaction: TRACE
        log4j.logger.kafka.log.LogCleanerManager: DEBUG
        log4j.logger.kafka.request.logger: DEBUG
        log4j.logger.io.strimzi.kafka.oauth: DEBUG
        log4j.logger.org.openpolicyagents.kafka.OpaAuthorizer: DEBUG
  # ...
Note
Setting a log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: kafka-log4j.properties
  # ...

Any available loggers that are not configured have their level set to OFF.

If Kafka was deployed using the Cluster Operator, changes to Kafka logging levels are applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

5.5. KafkaClusterSpec schema properties

Property Property type Description

version

string

The Kafka broker version. Defaults to the latest version. Consult the user documentation to understand the process required to upgrade or downgrade the version.

metadataVersion

string

Added in Strimzi 0.39.0. The KRaft metadata version used by the Kafka cluster. This property is ignored when running in ZooKeeper mode. If the property is not set, it defaults to the metadata version that corresponds to the version property.

replicas

integer

The number of pods in the cluster. This property is required when node pools are not used.

image

string

The container image used for Kafka pods. If the property is not set, the default Kafka image version is determined based on the version configuration. The image names are specifically mapped to corresponding versions in the Cluster Operator configuration. Changing the Kafka image version does not automatically update the image versions for other components, such as Kafka Exporter.

listeners

GenericKafkaListener array

Configures listeners of Kafka brokers.

config

map

Kafka broker config properties with the following prefixes cannot be set: listeners, advertised., broker., listener., host.name, port, inter.broker.listener.name, sasl., ssl., security., password., log.dir, zookeeper.connect, zookeeper.set.acl, zookeeper.ssl, zookeeper.clientCnxnSocket, authorizer., super.user, cruise.control.metrics.topic, cruise.control.metrics.reporter.bootstrap.servers, node.id, process.roles, controller., metadata.log.dir, zookeeper.metadata.migration.enable (with the exception of: zookeeper.connection.timeout.ms, sasl.server.max.receive.size, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols, ssl.secure.random.implementation, cruise.control.metrics.topic.num.partitions, cruise.control.metrics.topic.replication.factor, cruise.control.metrics.topic.retention.ms, cruise.control.metrics.topic.auto.create.retries, cruise.control.metrics.topic.auto.create.timeout.ms, cruise.control.metrics.topic.min.insync.replicas, controller.quorum.election.backoff.max.ms, controller.quorum.election.timeout.ms, controller.quorum.fetch.timeout.ms).

storage

EphemeralStorage, PersistentClaimStorage, JbodStorage

Storage configuration (disk). Cannot be updated. This property is required when node pools are not used.

authorization

KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom

Authorization configuration for Kafka brokers.

rack

Rack

Configuration of the broker.rack broker config.

brokerRackInitImage

string

The image of the init container used for initializing the broker.rack.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

jvmOptions

JvmOptions

JVM Options for pods.

jmxOptions

KafkaJmxOptions

JMX Options for Kafka brokers.

resources

ResourceRequirements

CPU and memory resources to reserve.

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

logging

InlineLogging, ExternalLogging

Logging configuration for Kafka.

template

KafkaClusterTemplate

Template for Kafka cluster resources. The template allows users to specify how the Kubernetes resources are generated.

tieredStorage

TieredStorageCustom

Configure the tiered storage feature for Kafka brokers.

6. GenericKafkaListener schema reference

Used in: KafkaClusterSpec

Configures listeners to connect to Kafka brokers within and outside Kubernetes.

You configure the listeners in the Kafka resource.

Example Kafka resource showing listener configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    #...
    listeners:
      - name: plain
        port: 9092
        type: internal
        tls: false
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls
      - name: external1
        port: 9094
        type: route
        tls: true
      - name: external2
        port: 9095
        type: ingress
        tls: true
        authentication:
          type: tls
        configuration:
          bootstrap:
            host: bootstrap.myingress.com
          brokers:
          - broker: 0
            host: broker-0.myingress.com
          - broker: 1
            host: broker-1.myingress.com
          - broker: 2
            host: broker-2.myingress.com
    #...

6.1. listeners

You configure Kafka broker listeners using the listeners property in the Kafka resource. Listeners are defined as an array.

Example listener configuration
listeners:
  - name: plain
    port: 9092
    type: internal
    tls: false

The name and port must be unique within the Kafka cluster. By specifying a unique name and port for each listener, you can configure multiple listeners. The name can be up to 25 characters long, comprising lower-case letters and numbers.

6.2. port

The port number is the port used in the Kafka cluster, which might not be the same port used for access by a client.

  • loadbalancer listeners use the specified port number, as do internal and cluster-ip listeners

  • ingress and route listeners use port 443 for access

  • nodeport listeners use the port number assigned by Kubernetes

For client connection, use the address and port for the bootstrap service of the listener. You can retrieve this from the status of the Kafka resource.

Example command to retrieve the address and port for client connection
kubectl get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?(@.name=="<listener_name>")].bootstrapServers}{"\n"}'
Important
When configuring listeners for client access to brokers, you can use port 9092 or higher (9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured to use the ports reserved for interbroker communication (9090 and 9091), Prometheus metrics (9404), and JMX (Java Management Extensions) monitoring (9999).

6.3. type

The type is set as internal, or for external listeners, as route, loadbalancer, nodeport, ingress or cluster-ip. You can also configure a cluster-ip listener, a type of internal listener you can use to build custom access mechanisms.

internal

You can configure internal listeners with or without encryption using the tls property.

Example internal listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: plain
        port: 9092
        type: internal
        tls: false
      - name: tls
        port: 9093
        type: internal
        tls: true
        authentication:
          type: tls
    #...
route

Configures an external listener to expose Kafka using OpenShift Routes and the HAProxy router.

A dedicated Route is created for every Kafka broker pod. An additional Route is created to serve as a Kafka bootstrap address. Kafka clients can use these Routes to connect to Kafka on port 443. The client connects on port 443, the default router port, but traffic is then routed to the port you configure, which is 9094 in this example.

Example route listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external1
        port: 9094
        type: route
        tls: true
    #...
ingress

Configures an external listener to expose Kafka using Kubernetes Ingress and the Ingress NGINX Controller for Kubernetes.

A dedicated Ingress resource is created for every Kafka broker pod. An additional Ingress resource is created to serve as a Kafka bootstrap address. Kafka clients can use these Ingress resources to connect to Kafka on port 443. The client connects on port 443, the default controller port, but traffic is then routed to the port you configure, which is 9095 in the following example.

You must specify the hostnames used by the bootstrap and per-broker services using GenericKafkaListenerConfigurationBootstrap and GenericKafkaListenerConfigurationBroker properties.

Example ingress listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external2
        port: 9095
        type: ingress
        tls: true
        authentication:
          type: tls
        configuration:
          bootstrap:
            host: bootstrap.myingress.com
          brokers:
          - broker: 0
            host: broker-0.myingress.com
          - broker: 1
            host: broker-1.myingress.com
          - broker: 2
            host: broker-2.myingress.com
  #...
Note
External listeners using Ingress are currently only tested with the Ingress NGINX Controller for Kubernetes.
loadbalancer

Configures an external listener to expose Kafka using a Loadbalancer type Service.

A new loadbalancer service is created for every Kafka broker pod. An additional loadbalancer is created to serve as a Kafka bootstrap address. Loadbalancers listen to the specified port number, which is port 9094 in the following example.

You can use the loadBalancerSourceRanges property to configure source ranges to restrict access to the specified IP addresses.

Example loadbalancer listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      - name: external3
        port: 9094
        type: loadbalancer
        tls: true
        configuration:
          loadBalancerSourceRanges:
            - 10.0.0.0/8
            - 88.208.76.87/32
    #...
nodeport

Configures an external listener to expose Kafka using a NodePort type Service.

Kafka clients connect directly to the nodes of Kubernetes. An additional NodePort type of service is created to serve as a Kafka bootstrap address.

When configuring the advertised addresses for the Kafka broker pods, Strimzi uses the address of the node on which the given pod is running. You can use preferredNodePortAddressType property to configure the first address type checked as the node address.

Example nodeport listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      #...
      - name: external4
        port: 9095
        type: nodeport
        tls: false
        configuration:
          preferredNodePortAddressType: InternalDNS
    #...
Note
TLS hostname verification is not currently supported when exposing Kafka clusters using node ports.
cluster-ip

Configures an internal listener to expose Kafka using a per-broker ClusterIP type Service.

The listener does not use a headless service and its DNS names to route traffic to Kafka brokers. You can use this type of listener to expose a Kafka cluster when using the headless service is unsuitable. You might use it with a custom access mechanism, such as one that uses a specific Ingress controller or the Kubernetes Gateway API.

A new ClusterIP service is created for each Kafka broker pod. The service is assigned a ClusterIP address to serve as a Kafka bootstrap address with a per-broker port number. For example, you can configure the listener to expose a Kafka cluster over an Nginx Ingress Controller with TCP port configuration.

Example cluster-ip listener configuration
#...
spec:
  kafka:
    #...
    listeners:
      - name: clusterip
        type: cluster-ip
        tls: false
        port: 9096
    #...

6.4. tls

The TLS property is required.

By default, TLS encryption is not enabled. To enable it, set the tls property to true.

For route and ingress type listeners, TLS encryption must be enabled.

6.5. authentication

Authentication for the listener can be specified as:

  • mTLS (tls)

  • SCRAM-SHA-512 (scram-sha-512)

  • Token-based OAuth 2.0 (oauth)

  • Custom (custom)

6.6. networkPolicyPeers

Use networkPolicyPeers to configure network policies that restrict access to a listener at the network level. The following example shows a networkPolicyPeers configuration for a plain and a tls listener.

In the following example:

  • Only application pods matching the labels app: kafka-sasl-consumer and app: kafka-sasl-producer can connect to the plain listener. The application pods must be running in the same namespace as the Kafka broker.

  • Only application pods running in namespaces matching the labels project: myproject and project: myproject2 can connect to the tls listener.

The syntax of the networkPolicyPeers property is the same as the from property in NetworkPolicy resources.

Example network policy configuration
listeners:
  #...
  - name: plain
    port: 9092
    type: internal
    tls: true
    authentication:
      type: scram-sha-512
    networkPolicyPeers:
      - podSelector:
          matchLabels:
            app: kafka-sasl-consumer
      - podSelector:
          matchLabels:
            app: kafka-sasl-producer
  - name: tls
    port: 9093
    type: internal
    tls: true
    authentication:
      type: tls
    networkPolicyPeers:
      - namespaceSelector:
          matchLabels:
            project: myproject
      - namespaceSelector:
          matchLabels:
            project: myproject2
# ...

6.7. GenericKafkaListener schema properties

Property Property type Description

name

string

Name of the listener. The name will be used to identify the listener and the related Kubernetes objects. The name has to be unique within given a Kafka cluster. The name can consist of lowercase characters and numbers and be up to 11 characters long.

port

integer

Port number used by the listener inside Kafka. The port number has to be unique within a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on the listener type, the port number might not be the same as the port number that connects Kafka clients.

type

string (one of [ingress, internal, route, loadbalancer, cluster-ip, nodeport])

Type of the listener. The supported types are as follows:

  • internal type exposes Kafka internally only within the Kubernetes cluster.

  • route type uses OpenShift Routes to expose Kafka.

  • loadbalancer type uses LoadBalancer type services to expose Kafka.

  • nodeport type uses NodePort type services to expose Kafka.

  • ingress type uses Kubernetes Nginx Ingress to expose Kafka with TLS passthrough.

  • cluster-ip type uses a per-broker ClusterIP service.

tls

boolean

Enables TLS encryption on the listener. This is a required property.

authentication

KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth, KafkaListenerAuthenticationCustom

Authentication configuration for this listener.

configuration

GenericKafkaListenerConfiguration

Additional listener configuration.

networkPolicyPeers

NetworkPolicyPeer array

List of peers which should be able to connect to this listener. Peers in this list are combined using a logical OR operation. If this field is empty or missing, all connections will be allowed for this listener. If this field is present and contains at least one item, the listener only allows the traffic which matches at least one item in this list.

7. KafkaListenerAuthenticationTls schema reference

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls type from KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth, KafkaListenerAuthenticationCustom. It must have the value tls for the type KafkaListenerAuthenticationTls.

Property Property type Description

type

string

Must be tls.

8. KafkaListenerAuthenticationScramSha512 schema reference

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationScramSha512 type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationOAuth, KafkaListenerAuthenticationCustom. It must have the value scram-sha-512 for the type KafkaListenerAuthenticationScramSha512.

Property Property type Description

type

string

Must be scram-sha-512.

9. KafkaListenerAuthenticationOAuth schema reference

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationOAuth type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationCustom. It must have the value oauth for the type KafkaListenerAuthenticationOAuth.

Property Property type Description

accessTokenIsJwt

boolean

Configure whether the access token is treated as JWT. This must be set to false if the authorization server returns opaque tokens. Defaults to true.

checkAccessTokenType

boolean

Configure whether the access token type check is performed or not. This should be set to false if the authorization server does not include 'typ' claim in JWT token. Defaults to true.

checkAudience

boolean

Enable or disable audience checking. Audience checks identify the recipients of tokens. If audience checking is enabled, the OAuth Client ID also has to be configured using the clientId property. The Kafka broker will reject tokens that do not have its clientId in their aud (audience) claim.Default value is false.

checkIssuer

boolean

Enable or disable issuer checking. By default issuer is checked using the value configured by validIssuerUri. Default value is true.

clientAudience

string

The audience to use when making requests to the authorization server’s token endpoint. Used for inter-broker authentication and for configuring OAuth 2.0 over PLAIN using the clientId and secret method.

clientId

string

OAuth Client ID which the Kafka broker can use to authenticate against the authorization server and use the introspect endpoint URI.

clientScope

string

The scope to use when making requests to the authorization server’s token endpoint. Used for inter-broker authentication and for configuring OAuth 2.0 over PLAIN using the clientId and secret method.

clientSecret

GenericSecretSource

Link to Kubernetes Secret containing the OAuth client secret which the Kafka broker can use to authenticate against the authorization server and use the introspect endpoint URI.

connectTimeoutSeconds

integer

The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds.

customClaimCheck

string

JsonPath filter query to be applied to the JWT token or to the response of the introspection endpoint for additional token validation. Not set by default.

disableTlsHostnameVerification

boolean

Enable or disable TLS hostname verification. Default value is false.

enableECDSA

boolean

The enableECDSA property has been deprecated. Enable or disable ECDSA support by installing BouncyCastle crypto provider. ECDSA support is always enabled. The BouncyCastle libraries are no longer packaged with Strimzi. Value is ignored.

enableMetrics

boolean

Enable or disable OAuth metrics. Default value is false.

enableOauthBearer

boolean

Enable or disable OAuth authentication over SASL_OAUTHBEARER. Default value is true.

enablePlain

boolean

Enable or disable OAuth authentication over SASL_PLAIN. There is no re-authentication support when this mechanism is used. Default value is false.

failFast

boolean

Enable or disable termination of Kafka broker processes due to potentially recoverable runtime errors during startup. Default value is true.

fallbackUserNameClaim

string

The fallback username claim to be used for the user id if the claim specified by userNameClaim is not present. This is useful when client_credentials authentication only results in the client id being provided in another claim. It only takes effect if userNameClaim is set.

fallbackUserNamePrefix

string

The prefix to use with the value of fallbackUserNameClaim to construct the user id. This only takes effect if fallbackUserNameClaim is true, and the value is present for the claim. Mapping usernames and client ids into the same user id space is useful in preventing name collisions.

groupsClaim

string

JsonPath query used to extract groups for the user during authentication. Extracted groups can be used by a custom authorizer. By default no groups are extracted.

groupsClaimDelimiter

string

A delimiter used to parse groups when they are extracted as a single String value rather than a JSON array. Default value is ',' (comma).

httpRetries

integer

The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries.

httpRetryPauseMs

integer

The pause to take before retrying a failed HTTP request. If not set, the default is to not pause at all but to immediately repeat a request.

includeAcceptHeader

boolean

Whether the Accept header should be set in requests to the authorization servers. The default value is true.

introspectionEndpointUri

string

URI of the token introspection endpoint which can be used to validate opaque non-JWT tokens.

jwksEndpointUri

string

URI of the JWKS certificate endpoint, which can be used for local JWT validation.

jwksExpirySeconds

integer

Configures how often are the JWKS certificates considered valid. The expiry interval has to be at least 60 seconds longer then the refresh interval specified in jwksRefreshSeconds. Defaults to 360 seconds.

jwksIgnoreKeyUse

boolean

Flag to ignore the 'use' attribute of key declarations in a JWKS endpoint response. Default value is false.

jwksMinRefreshPauseSeconds

integer

The minimum pause between two consecutive refreshes. When an unknown signing key is encountered the refresh is scheduled immediately, but will always wait for this minimum pause. Defaults to 1 second.

jwksRefreshSeconds

integer

Configures how often are the JWKS certificates refreshed. The refresh interval has to be at least 60 seconds shorter then the expiry interval specified in jwksExpirySeconds. Defaults to 300 seconds.

maxSecondsWithoutReauthentication

integer

Maximum number of seconds the authenticated session remains valid without re-authentication. This enables Apache Kafka re-authentication feature, and causes sessions to expire when the access token expires. If the access token expires before max time or if max time is reached, the client has to re-authenticate, otherwise the server will drop the connection. Not set by default - the authenticated session does not expire when the access token expires. This option only applies to SASL_OAUTHBEARER authentication mechanism (when enableOauthBearer is true).

readTimeoutSeconds

integer

The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds.

tlsTrustedCertificates

CertSecretSource array

Trusted certificates for TLS connection to the OAuth server.

tokenEndpointUri

string

URI of the Token Endpoint to use with SASL_PLAIN mechanism when the client authenticates with clientId and a secret. If set, the client can authenticate over SASL_PLAIN by either setting username to clientId, and setting password to client secret, or by setting username to account username, and password to access token prefixed with $accessToken:. If this option is not set, the password is always interpreted as an access token (without a prefix), and username as the account username (a so called 'no-client-credentials' mode).

type

string

Must be oauth.

userInfoEndpointUri

string

URI of the User Info Endpoint to use as a fallback to obtaining the user id when the Introspection Endpoint does not return information that can be used for the user id.

userNameClaim

string

Name of the claim from the JWT authentication token, Introspection Endpoint response or User Info Endpoint response which will be used to extract the user id. Defaults to sub.

validIssuerUri

string

URI of the token issuer used for authentication.

validTokenType

string

Valid value for the token_type attribute returned by the Introspection Endpoint. No default value, and not checked by default.

10. GenericSecretSource schema reference

Property Property type Description

key

string

The key under which the secret value is stored in the Kubernetes Secret.

secretName

string

The name of the Kubernetes Secret containing the secret value.

11. CertSecretSource schema reference

Property Property type Description

certificate

string

The name of the file certificate in the Secret.

secretName

string

The name of the Secret containing the certificate.

12. KafkaListenerAuthenticationCustom schema reference

To configure custom authentication, set the type property to custom.

Custom authentication allows for any type of Kafka-supported authentication to be used.

Example custom OAuth authentication configuration
spec:
  kafka:
    config:
      principal.builder.class: SimplePrincipal.class
    listeners:
      - name: oauth-bespoke
        port: 9093
        type: internal
        tls: true
        authentication:
          type: custom
          sasl: true
          listenerConfig:
            oauthbearer.sasl.client.callback.handler.class: client.class
            oauthbearer.sasl.server.callback.handler.class: server.class
            oauthbearer.sasl.login.callback.handler.class: login.class
            oauthbearer.connections.max.reauth.ms: 999999999
            sasl.enabled.mechanisms: oauthbearer
            oauthbearer.sasl.jaas.config: |
              org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required ;
          secrets:
            - name: example

A protocol map is generated that uses the sasl and tls values to determine which protocol to map to the listener.

  • SASL = True, TLS = True → SASL_SSL

  • SASL = False, TLS = True → SSL

  • SASL = True, TLS = False → SASL_PLAINTEXT

  • SASL = False, TLS = False → PLAINTEXT

12.1. listenerConfig

Listener configuration specified using listenerConfig is prefixed with listener.name.<listener_name>-<port>. For example, sasl.enabled.mechanisms becomes listener.name.<listener_name>-<port>.sasl.enabled.mechanisms.

12.2. secrets

Secrets are mounted to /opt/kafka/custom-authn-secrets/custom-listener-<listener_name>-<port>/<secret_name> in the Kafka broker nodes' containers.

For example, the mounted secret (example) in the example configuration would be located at /opt/kafka/custom-authn-secrets/custom-listener-oauth-bespoke-9093/example.

12.3. Principal builder

You can set a custom principal builder in the Kafka cluster configuration. However, the principal builder is subject to the following requirements:

  • The specified principal builder class must exist on the image. Before building your own, check if one already exists. You’ll need to rebuild the Strimzi images with the required classes.

  • No other listener is using oauth type authentication. This is because an OAuth listener appends its own principle builder to the Kafka configuration.

  • The specified principal builder is compatible with Strimzi.

Custom principal builders must support peer certificates for authentication, as Strimzi uses these to manage the Kafka cluster.

A custom OAuth principal builder might be identical or very similar to the Strimzi OAuth principal builder.

Note
Kafka’s default principal builder class supports the building of principals based on the names of peer certificates. The custom principal builder should provide a principal of type user using the name of the SSL peer certificate.

The following example shows a custom principal builder that satisfies the OAuth requirements of Strimzi.

Example principal builder for custom OAuth configuration
public final class CustomKafkaPrincipalBuilder implements KafkaPrincipalBuilder {

    public KafkaPrincipalBuilder() {}

    @Override
    public KafkaPrincipal build(AuthenticationContext context) {
        if (context instanceof SslAuthenticationContext) {
            SSLSession sslSession = ((SslAuthenticationContext) context).session();
            try {
                return new KafkaPrincipal(
                    KafkaPrincipal.USER_TYPE, sslSession.getPeerPrincipal().getName());
            } catch (SSLPeerUnverifiedException e) {
                throw new IllegalArgumentException("Cannot use an unverified peer for authentication", e);
            }
        }

        // Create your own KafkaPrincipal here
        ...
    }
}

12.4. KafkaListenerAuthenticationCustom schema properties

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationCustom type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth. It must have the value custom for the type KafkaListenerAuthenticationCustom.

Property Property type Description

listenerConfig

map

Configuration to be used for a specific listener. All values are prefixed with listener.name.<listener_name>.

sasl

boolean

Enable or disable SASL on this listener.

secrets

GenericSecretSource array

Secrets to be mounted to /opt/kafka/custom-authn-secrets/custom-listener-<listener_name>-<port>/<secret_name>.

type

string

Must be custom.

13. GenericKafkaListenerConfiguration schema reference

Configuration for Kafka listeners.

13.1. brokerCertChainAndKey

The brokerCertChainAndKey property is only used with listeners that have TLS encryption enabled. You can use the property to provide your own Kafka listener certificates.

Example configuration for a loadbalancer external listener with TLS encryption enabled
listeners:
  #...
  - name: external3
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      brokerCertChainAndKey:
        secretName: my-secret
        certificate: my-listener-certificate.crt
        key: my-listener-key.key
# ...

When the certificate or key in the brokerCertChainAndKey secret is updated, the operator will automatically detect it in the next reconciliation and trigger a rolling update of the Kafka brokers to reload the certificate.

13.2. externalTrafficPolicy

The externalTrafficPolicy property is used with loadbalancer and nodeport listeners. When exposing Kafka outside of Kubernetes you can choose Local or Cluster. Local avoids hops to other nodes and preserves the client IP, whereas Cluster does neither. The default is Cluster.

13.3. loadBalancerSourceRanges

The loadBalancerSourceRanges property is only used with loadbalancer listeners. When exposing Kafka outside of Kubernetes use source ranges, in addition to labels and annotations, to customize how a service is created.

Example source ranges configured for a loadbalancer listener
listeners:
  #...
  - name: external3
    port: 9094
    type: loadbalancer
    tls: false
    configuration:
      externalTrafficPolicy: Local
      loadBalancerSourceRanges:
        - 10.0.0.0/8
        - 88.208.76.87/32
      # ...
# ...

13.4. class

The class property is only used with ingress listeners. You can configure the Ingress class using the class property.

Example of an external listener of type ingress using Ingress class nginx-internal
listeners:
  #...
  - name: external2
    port: 9094
    type: ingress
    tls: true
    configuration:
      class: nginx-internal
    # ...
# ...

13.5. preferredNodePortAddressType

The preferredNodePortAddressType property is only used with nodeport listeners.

Use the preferredNodePortAddressType property in your listener configuration to specify the first address type checked as the node address. This property is useful, for example, if your deployment does not have DNS support, or you only want to expose a broker internally through an internal DNS or IP address. If an address of this type is found, it is used. If the preferred address type is not found, Strimzi proceeds through the types in the standard order of priority:

  1. ExternalDNS

  2. ExternalIP

  3. Hostname

  4. InternalDNS

  5. InternalIP

Example of an external listener configured with a preferred node port address type
listeners:
  #...
  - name: external4
    port: 9094
    type: nodeport
    tls: false
    configuration:
      preferredNodePortAddressType: InternalDNS
      # ...
# ...

13.6. useServiceDnsDomain

The useServiceDnsDomain property is only used with internal and cluster-ip listeners. It defines whether the fully-qualified DNS names that include the cluster service suffix (usually .cluster.local) are used. With useServiceDnsDomain set as false, the advertised addresses are generated without the service suffix; for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc. With useServiceDnsDomain set as true, the advertised addresses are generated with the service suffix; for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc.cluster.local. Default is false.

Example of an internal listener configured to use the Service DNS domain
listeners:
  #...
  - name: plain
    port: 9092
    type: internal
    tls: false
    configuration:
      useServiceDnsDomain: true
      # ...
# ...

If your Kubernetes cluster uses a different service suffix than .cluster.local, you can configure the suffix using the KUBERNETES_SERVICE_DNS_DOMAIN environment variable in the Cluster Operator configuration.

13.7. GenericKafkaListenerConfiguration schema properties

Property Property type Description

brokerCertChainAndKey

CertAndKeySecretSource

Reference to the Secret which holds the certificate and private key pair which will be used for this listener. The certificate can optionally contain the whole chain. This field can be used only with listeners with enabled TLS encryption.

externalTrafficPolicy

string (one of [Local, Cluster])

Specifies whether the service routes external traffic to node-local or cluster-wide endpoints. Cluster may cause a second hop to another node and obscures the client source IP. Local avoids a second hop for LoadBalancer and Nodeport type services and preserves the client source IP (when supported by the infrastructure). If unspecified, Kubernetes will use Cluster as the default.This field can be used only with loadbalancer or nodeport type listener.

loadBalancerSourceRanges

string array

A list of CIDR ranges (for example 10.0.0.0/8 or 130.211.204.1/32) from which clients can connect to load balancer type listeners. If supported by the platform, traffic through the loadbalancer is restricted to the specified CIDR ranges. This field is applicable only for loadbalancer type services and is ignored if the cloud provider does not support the feature. This field can be used only with loadbalancer type listener.

bootstrap

GenericKafkaListenerConfigurationBootstrap

Bootstrap configuration.

brokers

GenericKafkaListenerConfigurationBroker array

Per-broker configurations.

ipFamilyPolicy

string (one of [RequireDualStack, SingleStack, PreferDualStack])

Specifies the IP Family Policy used by the service. Available options are SingleStack, PreferDualStack and RequireDualStack. SingleStack is for a single IP family. PreferDualStack is for two IP families on dual-stack configured clusters or a single IP family on single-stack clusters. RequireDualStack fails unless there are two IP families on dual-stack configured clusters. If unspecified, Kubernetes will choose the default value based on the service type.

ipFamilies

string (one or more of [IPv6, IPv4]) array

Specifies the IP Families used by the service. Available options are IPv4 and IPv6. If unspecified, Kubernetes will choose the default value based on the ipFamilyPolicy setting.

createBootstrapService

boolean

Whether to create the bootstrap service or not. The bootstrap service is created by default (if not specified differently). This field can be used with the loadBalancer type listener.

class

string

Configures a specific class for Ingress and LoadBalancer that defines which controller will be used. This field can only be used with ingress and loadbalancer type listeners. If not specified, the default controller is used. For an ingress listener, set the ingressClassName property in the Ingress resources. For a loadbalancer listener, set the loadBalancerClass property in the Service resources.

finalizers

string array

A list of finalizers which will be configured for the LoadBalancer type Services created for this listener. If supported by the platform, the finalizer service.kubernetes.io/load-balancer-cleanup to make sure that the external load balancer is deleted together with the service.For more information, see https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#garbage-collecting-load-balancers. This field can be used only with loadbalancer type listeners.

maxConnectionCreationRate

integer

The maximum connection creation rate we allow in this listener at any time. New connections will be throttled if the limit is reached.

maxConnections

integer

The maximum number of connections we allow for this listener in the broker at any time. New connections are blocked if the limit is reached.

preferredNodePortAddressType

string (one of [ExternalDNS, ExternalIP, Hostname, InternalIP, InternalDNS])

Defines which address type should be used as the node address. Available types are: ExternalDNS, ExternalIP, InternalDNS, InternalIP and Hostname. By default, the addresses will be used in the following order (the first one found will be used):

  • ExternalDNS

  • ExternalIP

  • InternalDNS

  • InternalIP

  • Hostname

This field is used to select the preferred address type, which is checked first. If no address is found for this address type, the other types are checked in the default order. This field can only be used with nodeport type listener.

useServiceDnsDomain

boolean

Configures whether the Kubernetes service DNS domain should be used or not. If set to true, the generated addresses will contain the service DNS domain suffix (by default .cluster.local, can be configured using environment variable KUBERNETES_SERVICE_DNS_DOMAIN). Defaults to false.This field can be used only with internal and cluster-ip type listeners.

14. CertAndKeySecretSource schema reference

Property Property type Description

certificate

string

The name of the file certificate in the Secret.

key

string

The name of the private key in the Secret.

secretName

string

The name of the Secret containing the certificate.

15. GenericKafkaListenerConfigurationBootstrap schema reference

Broker service equivalents of nodePort, host, loadBalancerIP and annotations properties are configured in the GenericKafkaListenerConfigurationBroker schema.

15.1. alternativeNames

You can specify alternative names for the bootstrap service. The names are added to the broker certificates and can be used for TLS hostname verification. The alternativeNames property is applicable to all types of listeners.

Example of an external route listener configured with an additional bootstrap address
listeners:
  #...
  - name: external1
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        alternativeNames:
          - example.hostname1
          - example.hostname2
# ...

15.2. host

The host property is used with route and ingress listeners to specify the hostnames used by the bootstrap and per-broker services.

A host property value is mandatory for ingress listener configuration, as the Ingress controller does not assign any hostnames automatically. Make sure that the hostnames resolve to the Ingress endpoints. Strimzi will not perform any validation that the requested hosts are available and properly routed to the Ingress endpoints.

Example of host configuration for an ingress listener
listeners:
  #...
  - name: external2
    port: 9094
    type: ingress
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        host: bootstrap.myingress.com
      brokers:
      - broker: 0
        host: broker-0.myingress.com
      - broker: 1
        host: broker-1.myingress.com
      - broker: 2
        host: broker-2.myingress.com
# ...

By default, route listener hosts are automatically assigned by OpenShift. However, you can override the assigned route hosts by specifying hosts.

Strimzi does not perform any validation that the requested hosts are available. You must ensure that they are free and can be used.

Example of host configuration for a route listener
# ...
listeners:
  #...
  - name: external1
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        host: bootstrap.myrouter.com
      brokers:
      - broker: 0
        host: broker-0.myrouter.com
      - broker: 1
        host: broker-1.myrouter.com
      - broker: 2
        host: broker-2.myrouter.com
# ...

15.3. nodePort

By default, the port numbers used for the bootstrap and broker services are automatically assigned by Kubernetes. You can override the assigned node ports for nodeport listeners by specifying the requested port numbers.

Strimzi does not perform any validation on the requested ports. You must ensure that they are free and available for use.

Example of an external listener configured with overrides for node ports
# ...
listeners:
  #...
  - name: external4
    port: 9094
    type: nodeport
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        nodePort: 32100
      brokers:
      - broker: 0
        nodePort: 32000
      - broker: 1
        nodePort: 32001
      - broker: 2
        nodePort: 32002
# ...

15.4. loadBalancerIP

Use the loadBalancerIP property to request a specific IP address when creating a loadbalancer. Use this property when you need to use a loadbalancer with a specific IP address. The loadBalancerIP field is ignored if the cloud provider does not support the feature.

Example of an external listener of type loadbalancer with specific loadbalancer IP address requests
# ...
listeners:
  #...
  - name: external3
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        loadBalancerIP: 172.29.3.10
      brokers:
      - broker: 0
        loadBalancerIP: 172.29.3.1
      - broker: 1
        loadBalancerIP: 172.29.3.2
      - broker: 2
        loadBalancerIP: 172.29.3.3
# ...

15.5. annotations

Use the annotations property to add annotations to Kubernetes resources related to the listeners. You can use these annotations, for example, to instrument DNS tooling such as External DNS, which automatically assigns DNS names to the loadbalancer services.

Example of an external listener of type loadbalancer using annotations
# ...
listeners:
  #...
  - name: external3
    port: 9094
    type: loadbalancer
    tls: true
    authentication:
      type: tls
    configuration:
      bootstrap:
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      brokers:
      - broker: 0
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      - broker: 1
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
      - broker: 2
        annotations:
          external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
          external-dns.alpha.kubernetes.io/ttl: "60"
# ...

15.6. GenericKafkaListenerConfigurationBootstrap schema properties

Property Property type Description

alternativeNames

string array

Additional alternative names for the bootstrap service. The alternative names will be added to the list of subject alternative names of the TLS certificates.

host

string

The bootstrap host. This field will be used in the Ingress resource or in the Route resource to specify the desired hostname. This field can be used only with route (optional) or ingress (required) type listeners.

nodePort

integer

Node port for the bootstrap service. This field can be used only with nodeport type listener.

loadBalancerIP

string

The loadbalancer is requested with the IP address specified in this field. This feature depends on whether the underlying cloud provider supports specifying the loadBalancerIP when a load balancer is created. This field is ignored if the cloud provider does not support the feature.This field can be used only with loadbalancer type listener.

annotations

map

Annotations that will be added to the Ingress, Route, or Service resource. You can use this field to configure DNS providers such as External DNS. This field can be used only with loadbalancer, nodeport, route, or ingress type listeners.

labels

map

Labels that will be added to the Ingress, Route, or Service resource. This field can be used only with loadbalancer, nodeport, route, or ingress type listeners.

16. GenericKafkaListenerConfigurationBroker schema reference

You can see example configuration for the nodePort, host, loadBalancerIP and annotations properties in the GenericKafkaListenerConfigurationBootstrap schema, which configures bootstrap service overrides.

Advertised addresses for brokers

By default, Strimzi tries to automatically determine the hostnames and ports that your Kafka cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which Strimzi is running might not provide the right hostname or port through which Kafka can be accessed.

You can specify a broker ID and customize the advertised hostname and port in the configuration property of the listener. Strimzi will then automatically configure the advertised address in the Kafka brokers and add it to the broker certificates so it can be used for TLS hostname verification. Overriding the advertised host and ports is available for all types of listeners.

Example of an external route listener configured with overrides for advertised addresses
listeners:
  #...
  - name: external1
    port: 9094
    type: route
    tls: true
    authentication:
      type: tls
    configuration:
      brokers:
      - broker: 0
        advertisedHost: example.hostname.0
        advertisedPort: 12340
      - broker: 1
        advertisedHost: example.hostname.1
        advertisedPort: 12341
      - broker: 2
        advertisedHost: example.hostname.2
        advertisedPort: 12342
# ...

16.1. GenericKafkaListenerConfigurationBroker schema properties

Property Property type Description

broker

integer

ID of the kafka broker (broker identifier). Broker IDs start from 0 and correspond to the number of broker replicas.

advertisedHost

string

The host name used in the brokers' advertised.listeners.

advertisedPort

integer

The port number used in the brokers' advertised.listeners.

host

string

The broker host. This field will be used in the Ingress resource or in the Route resource to specify the desired hostname. This field can be used only with route (optional) or ingress (required) type listeners.

nodePort

integer

Node port for the per-broker service. This field can be used only with nodeport type listener.

loadBalancerIP

string

The loadbalancer is requested with the IP address specified in this field. This feature depends on whether the underlying cloud provider supports specifying the loadBalancerIP when a load balancer is created. This field is ignored if the cloud provider does not support the feature.This field can be used only with loadbalancer type listener.

annotations

map

Annotations that will be added to the Ingress or Service resource. You can use this field to configure DNS providers such as External DNS. This field can be used only with loadbalancer, nodeport, or ingress type listeners.

labels

map

Labels that will be added to the Ingress, Route, or Service resource. This field can be used only with loadbalancer, nodeport, route, or ingress type listeners.

17. EphemeralStorage schema reference

The type property is a discriminator that distinguishes use of the EphemeralStorage type from PersistentClaimStorage. It must have the value ephemeral for the type EphemeralStorage.

Property Property type Description

id

integer

Storage identification number. It is mandatory only for storage volumes defined in a storage of type 'jbod'.

sizeLimit

string

When type=ephemeral, defines the total amount of local storage required for this EmptyDir volume (for example 1Gi).

type

string

Must be ephemeral.

18. PersistentClaimStorage schema reference

The type property is a discriminator that distinguishes use of the PersistentClaimStorage type from EphemeralStorage. It must have the value persistent-claim for the type PersistentClaimStorage.

Property Property type Description

type

string

Must be persistent-claim.

size

string

When type=persistent-claim, defines the size of the persistent volume claim, such as 100Gi. Mandatory when type=persistent-claim.

selector

map

Specifies a specific persistent volume to use. It contains key:value pairs representing labels for selecting such a volume.

deleteClaim

boolean

Specifies if the persistent volume claim has to be deleted when the cluster is un-deployed.

class

string

The storage class to use for dynamic volume allocation.

id

integer

Storage identification number. It is mandatory only for storage volumes defined in a storage of type 'jbod'.

overrides

PersistentClaimStorageOverride array

Overrides for individual brokers. The overrides field allows to specify a different configuration for different brokers.

19. PersistentClaimStorageOverride schema reference

Property Property type Description

class

string

The storage class to use for dynamic volume allocation for this broker.

broker

integer

Id of the kafka broker (broker identifier).

20. JbodStorage schema reference

The type property is a discriminator that distinguishes use of the JbodStorage type from EphemeralStorage, PersistentClaimStorage. It must have the value jbod for the type JbodStorage.

Property Property type Description

type

string

Must be jbod.

volumes

EphemeralStorage, PersistentClaimStorage array

List of volumes as Storage objects representing the JBOD disks array.

21. KafkaAuthorizationSimple schema reference

Used in: KafkaClusterSpec

For simple authorization, Strimzi uses Kafka’s built-in authorization plugins: the StandardAuthorizer for KRaft mode and the AclAuthorizer for ZooKeeper-based cluster management. ACLs allow you to define which users have access to which resources at a granular level.

Configure the Kafka custom resource to use simple authorization. Set the type property in the authorization section to the value simple, and configure a list of super users.

Access rules are configured for the KafkaUser, as described in the ACLRule schema reference.

21.1. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL rules.

An example of simple authorization configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: simple
      superUsers:
        - CN=client_1
        - user_2
        - CN=client_3
    # ...
Note
The super.user configuration option in the config property in Kafka.spec.kafka is ignored. Designate super users in the authorization property instead. For more information, see Kafka broker configuration.

21.2. KafkaAuthorizationSimple schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationSimple type from KafkaAuthorizationOpa, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have the value simple for the type KafkaAuthorizationSimple.

Property Property type Description

type

string

Must be simple.

superUsers

string array

List of super users. Should contain list of user principals which should get unlimited access rights.

22. KafkaAuthorizationOpa schema reference

Used in: KafkaClusterSpec

To use Open Policy Agent authorization, set the type property in the authorization section to the value opa, and configure OPA properties as required. Strimzi uses Open Policy Agent plugin for Kafka authorization as the authorizer. For more information about the format of the input data and policy examples, see Open Policy Agent plugin for Kafka authorization.

22.1. url

The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will be queried by the authorizer. Required.

22.2. allowOnError

Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query the Open Policy Agent, for example, when it is temporarily unavailable. Defaults to false - all actions will be denied.

22.3. initialCacheCapacity

Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request. Defaults to 5000.

22.4. maximumCacheSize

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request. Defaults to 50000.

22.5. expireAfterMs

The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent server. In milliseconds. Defaults to 3600000 milliseconds (1 hour).

22.6. tlsTrustedCertificates

Trusted certificates for TLS connection to the OPA server.

22.7. superUsers

A list of user principals treated as super users, so that they are always allowed without querying the open Policy Agent policy.

An example of Open Policy Agent authorizer configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: opa
      url: http://opa:8181/v1/data/kafka/allow
      allowOnError: false
      initialCacheCapacity: 1000
      maximumCacheSize: 10000
      expireAfterMs: 60000
      superUsers:
        - CN=fred
        - sam
        - CN=edward
    # ...

22.8. KafkaAuthorizationOpa schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationOpa type from KafkaAuthorizationSimple, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have the value opa for the type KafkaAuthorizationOpa.

Property Property type Description

type

string

Must be opa.

url

string

The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will be queried by the authorizer. This option is required.

allowOnError

boolean

Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query the Open Policy Agent, for example, when it is temporarily unavailable). Defaults to false - all actions will be denied.

initialCacheCapacity

integer

Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request Defaults to 5000.

maximumCacheSize

integer

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request. Defaults to 50000.

expireAfterMs

integer

The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent server. In milliseconds. Defaults to 3600000.

tlsTrustedCertificates

CertSecretSource array

Trusted certificates for TLS connection to the OPA server.

superUsers

string array

List of super users, which is specifically a list of user principals that have unlimited access rights.

enableMetrics

boolean

Defines whether the Open Policy Agent authorizer plugin should provide metrics. Defaults to false.

23. KafkaAuthorizationKeycloak schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the KafkaAuthorizationKeycloak type from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationCustom. It must have the value keycloak for the type KafkaAuthorizationKeycloak.

Property Property type Description

type

string

Must be keycloak.

clientId

string

OAuth Client ID which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI.

tokenEndpointUri

string

Authorization server token endpoint URI.

tlsTrustedCertificates

CertSecretSource array

Trusted certificates for TLS connection to the OAuth server.

disableTlsHostnameVerification

boolean

Enable or disable TLS hostname verification. Default value is false.

delegateToKafkaAcls

boolean

Whether authorization decision should be delegated to the 'Simple' authorizer if DENIED by Keycloak Authorization Services policies. Default value is false.

grantsRefreshPeriodSeconds

integer

The time between two consecutive grants refresh runs in seconds. The default value is 60.

grantsRefreshPoolSize

integer

The number of threads to use to refresh grants for active sessions. The more threads, the more parallelism, so the sooner the job completes. However, using more threads places a heavier load on the authorization server. The default value is 5.

grantsGcPeriodSeconds

integer

The time, in seconds, between consecutive runs of a job that cleans stale grants from the cache. The default value is 300.

grantsAlwaysLatest

boolean

Controls whether the latest grants are fetched for a new session. When enabled, grants are retrieved from Keycloak and cached for the user. The default value is false.

superUsers

string array

List of super users. Should contain list of user principals which should get unlimited access rights.

connectTimeoutSeconds

integer

The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds.

readTimeoutSeconds

integer

The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds.

httpRetries

integer

The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries.

enableMetrics

boolean

Enable or disable OAuth metrics. The default value is false.

includeAcceptHeader

boolean

Whether the Accept header should be set in requests to the authorization servers. The default value is true.

grantsMaxIdleTimeSeconds

integer

The time, in seconds, after which an idle grant can be evicted from the cache. The default value is 300.

24. KafkaAuthorizationCustom schema reference

Used in: KafkaClusterSpec

To use custom authorization in Strimzi, you can configure your own Authorizer plugin to define Access Control Lists (ACLs).

ACLs allow you to define which users have access to which resources at a granular level.

Configure the Kafka custom resource to use custom authorization. Set the type property in the authorization section to the value custom, and the set following properties.

Important
The custom authorizer must implement the org.apache.kafka.server.authorizer.Authorizer interface, and support configuration of super.users using the super.users configuration property.

24.1. authorizerClass

(Required) Java class that implements the org.apache.kafka.server.authorizer.Authorizer interface to support custom ACLs.

24.2. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL rules.

You can add configuration for initializing the custom authorizer using Kafka.spec.kafka.config.

An example of custom authorization configuration under Kafka.spec
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
  namespace: myproject
spec:
  kafka:
    # ...
    authorization:
      type: custom
      authorizerClass: io.mycompany.CustomAuthorizer
      superUsers:
        - CN=client_1
        - user_2
        - CN=client_3
    # ...
    config:
      authorization.custom.property1=value1
      authorization.custom.property2=value2
    # ...

In addition to the Kafka custom resource configuration, the JAR file containing the custom authorizer class along with its dependencies must be available on the classpath of the Kafka broker.

The Strimzi Maven build process provides a mechanism to add custom third-party libraries to the generated Kafka broker container image by adding them as dependencies in the pom.xml file under the docker-images/kafka/kafka-thirdparty-libs directory. The directory contains different folders for different Kafka versions. Choose the appropriate folder. Before modifying the pom.xml file, the third-party library must be available in a Maven repository, and that Maven repository must be accessible to the Strimzi build process.

Note
The super.user configuration option in the config property in Kafka.spec.kafka is ignored. Designate super users in the authorization property instead. For more information, see Kafka broker configuration.

Custom authorization can make use of group membership information extracted from the JWT token during authentication when using oauth authentication and configuring groupsClaim configuration attribute. Groups are available on the OAuthKafkaPrincipal object during authorize() call as follows:

    public List<AuthorizationResult> authorize(AuthorizableRequestContext requestContext, List<Action> actions) {

        KafkaPrincipal principal = requestContext.principal();
        if (principal instanceof OAuthKafkaPrincipal) {
            OAuthKafkaPrincipal p = (OAuthKafkaPrincipal) principal;

            for (String group: p.getGroups()) {
                System.out.println("Group: " + group);
            }
        }
    }

24.3. KafkaAuthorizationCustom schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationCustom type from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationKeycloak. It must have the value custom for the type KafkaAuthorizationCustom.

Property Property type Description

type

string

Must be custom.

authorizerClass

string

Authorization implementation class, which must be available in classpath.

superUsers

string array

List of super users, which are user principals with unlimited access rights.

supportsAdminApi

boolean

Indicates whether the custom authorizer supports the APIs for managing ACLs using the Kafka Admin API. Defaults to false.

25. Rack schema reference

The rack option configures rack awareness. A rack can represent an availability zone, data center, or an actual rack in your data center. The rack is configured through a topologyKey. topologyKey identifies a label on Kubernetes nodes that contains the name of the topology in its value. An example of such a label is topology.kubernetes.io/zone (or failure-domain.beta.kubernetes.io/zone on older Kubernetes versions), which contains the name of the availability zone in which the Kubernetes node runs. You can configure your Kafka cluster to be aware of the rack in which it runs, and enable additional features such as spreading partition replicas across different racks or consuming messages from the closest replicas.

For more information about Kubernetes node labels, see Well-Known Labels, Annotations and Taints. Consult your Kubernetes administrator regarding the node label that represents the zone or rack into which the node is deployed.

25.1. Spreading partition replicas across racks

When rack awareness is configured, Strimzi will set broker.rack configuration for each Kafka broker. The broker.rack configuration assigns a rack ID to each broker. When broker.rack is configured, Kafka brokers will spread partition replicas across as many different racks as possible. When replicas are spread across multiple racks, the probability that multiple replicas will fail at the same time is lower than if they would be in the same rack. Spreading replicas improves resiliency, and is important for availability and reliability. To enable rack awareness in Kafka, add the rack option to the .spec.kafka section of the Kafka custom resource as shown in the example below.

Example rack configuration for Kafka
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    rack:
      topologyKey: topology.kubernetes.io/zone
    # ...
Note
The rack in which brokers are running can change in some cases when the pods are deleted or restarted. As a result, the replicas running in different racks might then share the same rack. Use Cruise Control and the KafkaRebalance resource with the RackAwareGoal to make sure that replicas remain distributed across different racks.

When rack awareness is enabled in the Kafka custom resource, Strimzi will automatically add the Kubernetes preferredDuringSchedulingIgnoredDuringExecution affinity rule to distribute the Kafka brokers across the different racks. However, the preferred rule does not guarantee that the brokers will be spread. Depending on your exact Kubernetes and Kafka configurations, you should add additional affinity rules or configure topologySpreadConstraints for both ZooKeeper and Kafka to make sure the nodes are properly distributed accross as many racks as possible. For more information see Configuring pod scheduling.

25.2. Consuming messages from the closest replicas

Rack awareness can also be used in consumers to fetch data from the closest replica. This is useful for reducing the load on your network when a Kafka cluster spans multiple datacenters and can also reduce costs when running Kafka in public clouds. However, it can lead to increased latency.

In order to be able to consume from the closest replica, rack awareness has to be configured in the Kafka cluster, and the RackAwareReplicaSelector has to be enabled. The replica selector plugin provides the logic that enables clients to consume from the nearest replica. The default implementation uses LeaderSelector to always select the leader replica for the client. Specify RackAwareReplicaSelector for the replica.selector.class to switch from the default implementation.

Example rack configuration with enabled replica-aware selector
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    rack:
      topologyKey: topology.kubernetes.io/zone
    config:
      # ...
      replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
    # ...

In addition to the Kafka broker configuration, you also need to specify the client.rack option in your consumers. The client.rack option should specify the rack ID in which the consumer is running. RackAwareReplicaSelector associates matching broker.rack and client.rack IDs, to find the nearest replica and consume from it. If there are multiple replicas in the same rack, RackAwareReplicaSelector always selects the most up-to-date replica. If the rack ID is not specified, or if it cannot find a replica with the same rack ID, it will fall back to the leader replica.

consuming from replicas in the same availability zone
Figure 1. Example showing client consuming from replicas in the same availability zone

You can also configure Kafka Connect, MirrorMaker 2 and Kafka Bridge so that connectors consume messages from the closest replicas. You enable rack awareness in the KafkaConnect, KafkaMirrorMaker2, and KafkaBridge custom resources. The configuration does does not set affinity rules, but you can also configure affinity or topologySpreadConstraints. For more information see Configuring pod scheduling.

When deploying Kafka Connect using Strimzi, you can use the rack section in the KafkaConnect custom resource to automatically configure the client.rack option.

Example rack configuration for Kafka Connect
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
# ...
spec:
  # ...
  rack:
    topologyKey: topology.kubernetes.io/zone
  # ...

When deploying MirrorMaker 2 using Strimzi, you can use the rack section in the KafkaMirrorMaker2 custom resource to automatically configure the client.rack option.

Example rack configuration for MirrorMaker 2
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
# ...
spec:
  # ...
  rack:
    topologyKey: topology.kubernetes.io/zone
  # ...

When deploying Kafka Bridge using Strimzi, you can use the rack section in the KafkaBridge custom resource to automatically configure the client.rack option.

Example rack configuration for Kafka Bridge
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
# ...
spec:
  # ...
  rack:
    topologyKey: topology.kubernetes.io/zone
  # ...

25.3. Rack schema properties

Property Property type Description

topologyKey

string

A key that matches labels assigned to the Kubernetes cluster nodes. The value of the label is used to set a broker’s broker.rack config, and the client.rack config for Kafka Connect or MirrorMaker 2.

26. Probe schema reference

Property Property type Description

failureThreshold

integer

Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1.

initialDelaySeconds

integer

The initial delay before first the health is first checked. Default to 15 seconds. Minimum value is 0.

periodSeconds

integer

How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1.

successThreshold

integer

Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1. Must be 1 for liveness. Minimum value is 1.

timeoutSeconds

integer

The timeout for each attempted health check. Default to 5 seconds. Minimum value is 1.

27. JvmOptions schema reference

Property Property type Description

-XX

map

A map of -XX options to the JVM.

-Xms

string

-Xms option to to the JVM.

-Xmx

string

-Xmx option to to the JVM.

gcLoggingEnabled

boolean

Specifies whether the Garbage Collection logging is enabled. The default is false.

javaSystemProperties

SystemProperty array

A map of additional system properties which will be passed using the -D option to the JVM.

28. SystemProperty schema reference

Used in: JvmOptions

Property Property type Description

name

string

The system property name.

value

string

The system property value.

29. KafkaJmxOptions schema reference

Configures JMX connection options.

Get JMX metrics from Kafka brokers, ZooKeeper nodes, Kafka Connect, and MirrorMaker 2. by connecting to port 9999. Use the jmxOptions property to configure a password-protected or an unprotected JMX port. Using password protection prevents unauthorized pods from accessing the port.

You can then obtain metrics about the component.

For example, for each Kafka broker you can obtain bytes-per-second usage data from clients, or the request rate of the network of the broker.

To enable security for the JMX port, set the type parameter in the authentication field to password.

Example password-protected JMX configuration for Kafka brokers and ZooKeeper nodes
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    jmxOptions:
      authentication:
        type: "password"
    # ...
  zookeeper:
    # ...
    jmxOptions:
      authentication:
        type: "password"
    #...

You can then deploy a pod into a cluster and obtain JMX metrics using the headless service by specifying which broker you want to address.

For example, to get JMX metrics from broker 0 you specify:

"CLUSTER-NAME-kafka-0.CLUSTER-NAME-kafka-brokers"

CLUSTER-NAME-kafka-0 is name of the broker pod, and CLUSTER-NAME-kafka-brokers is the name of the headless service to return the IPs of the broker pods.

If the JMX port is secured, you can get the username and password by referencing them from the JMX Secret in the deployment of your pod.

For an unprotected JMX port, use an empty object {} to open the JMX port on the headless service. You deploy a pod and obtain metrics in the same way as for the protected port, but in this case any pod can read from the JMX port.

Example open port JMX configuration for Kafka brokers and ZooKeeper nodes
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
    jmxOptions: {}
    # ...
  zookeeper:
    # ...
    jmxOptions: {}
    # ...
Additional resources

29.1. KafkaJmxOptions schema properties

Property Property type Description

authentication

KafkaJmxAuthenticationPassword

Authentication configuration for connecting to the JMX port.

30. KafkaJmxAuthenticationPassword schema reference

Used in: KafkaJmxOptions

The type property is a discriminator that distinguishes use of the KafkaJmxAuthenticationPassword type from other subtypes which may be added in the future. It must have the value password for the type KafkaJmxAuthenticationPassword.

Property Property type Description

type

string

Must be password.

31. JmxPrometheusExporterMetrics schema reference

The type property is a discriminator that distinguishes use of the JmxPrometheusExporterMetrics type from other subtypes which may be added in the future. It must have the value jmxPrometheusExporter for the type JmxPrometheusExporterMetrics.

Property Property type Description

type

string

Must be jmxPrometheusExporter.

valueFrom

ExternalConfigurationReference

ConfigMap entry where the Prometheus JMX Exporter configuration is stored.

32. ExternalConfigurationReference schema reference

Property Property type Description

configMapKeyRef

ConfigMapKeySelector

Reference to the key in the ConfigMap containing the configuration.

33. InlineLogging schema reference

The type property is a discriminator that distinguishes use of the InlineLogging type from ExternalLogging. It must have the value inline for the type InlineLogging.

Property Property type Description

type

string

Must be inline.

loggers

map

A Map from logger name to logger level.

34. ExternalLogging schema reference

The type property is a discriminator that distinguishes use of the ExternalLogging type from InlineLogging. It must have the value external for the type ExternalLogging.

Property Property type Description

type

string

Must be external.

valueFrom

ExternalConfigurationReference

ConfigMap entry where the logging configuration is stored.

35. KafkaClusterTemplate schema reference

Used in: KafkaClusterSpec

Property Property type Description

statefulset

StatefulSetTemplate

The statefulset property has been deprecated. Support for StatefulSets was removed in Strimzi 0.35.0. This property is ignored. Template for Kafka StatefulSet.

pod

PodTemplate

Template for Kafka Pods.

bootstrapService

InternalServiceTemplate

Template for Kafka bootstrap Service.

brokersService

InternalServiceTemplate

Template for Kafka broker Service.

externalBootstrapService

ResourceTemplate

Template for Kafka external bootstrap Service.

perPodService

ResourceTemplate

Template for Kafka per-pod Services used for access from outside of Kubernetes.

externalBootstrapRoute

ResourceTemplate

Template for Kafka external bootstrap Route.

perPodRoute

ResourceTemplate

Template for Kafka per-pod Routes used for access from outside of OpenShift.

externalBootstrapIngress

ResourceTemplate

Template for Kafka external bootstrap Ingress.

perPodIngress

ResourceTemplate

Template for Kafka per-pod Ingress used for access from outside of Kubernetes.

persistentVolumeClaim

ResourceTemplate

Template for all Kafka PersistentVolumeClaims.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for Kafka PodDisruptionBudget.

kafkaContainer

ContainerTemplate

Template for the Kafka broker container.

initContainer

ContainerTemplate

Template for the Kafka init container.

clusterCaCert

ResourceTemplate

Template for Secret with Kafka Cluster certificate public key.

serviceAccount

ResourceTemplate

Template for the Kafka service account.

jmxSecret

ResourceTemplate

Template for Secret of the Kafka Cluster JMX authentication.

clusterRoleBinding

ResourceTemplate

Template for the Kafka ClusterRoleBinding.

podSet

ResourceTemplate

Template for Kafka StrimziPodSet resource.

36. StatefulSetTemplate schema reference

Property Property type Description

metadata

MetadataTemplate

Metadata applied to the resource.

podManagementPolicy

string (one of [OrderedReady, Parallel])

PodManagementPolicy which will be used for this StatefulSet. Valid values are Parallel and OrderedReady. Defaults to Parallel.

37. MetadataTemplate schema reference

Labels and Annotations are used to identify and organize resources, and are configured in the metadata property.

For example:

# ...
template:
  pod:
    metadata:
      labels:
        label1: value1
        label2: value2
      annotations:
        annotation1: value1
        annotation2: value2
# ...

The labels and annotations fields can contain any labels or annotations that do not contain the reserved string strimzi.io. Labels and annotations containing strimzi.io are used internally by Strimzi and cannot be configured.

37.1. MetadataTemplate schema properties

Property Property type Description

labels

map

Labels added to the Kubernetes resource.

annotations

map

Annotations added to the Kubernetes resource.

38. PodTemplate schema reference

Configures the template for Kafka pods.

Example PodTemplate configuration
# ...
template:
  pod:
    metadata:
      labels:
        label1: value1
      annotations:
        anno1: value1
    imagePullSecrets:
      - name: my-docker-credentials
    securityContext:
      runAsUser: 1000001
      fsGroup: 0
    terminationGracePeriodSeconds: 120
# ...

38.1. hostAliases

Use the hostAliases property to a specify a list of hosts and IP addresses, which are injected into the /etc/hosts file of the pod.

This configuration is especially useful for Kafka Connect or MirrorMaker when a connection outside of the cluster is also requested by users.

Example hostAliases configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
#...
spec:
  # ...
  template:
    pod:
      hostAliases:
      - ip: "192.168.1.86"
        hostnames:
        - "my-host-1"
        - "my-host-2"
      #...

38.2. PodTemplate schema properties

Property Property type Description

metadata

MetadataTemplate

Metadata applied to the resource.

imagePullSecrets

LocalObjectReference array

List of references to secrets in the same namespace to use for pulling any of the images used by this Pod. When the STRIMZI_IMAGE_PULL_SECRETS environment variable in Cluster Operator and the imagePullSecrets option are specified, only the imagePullSecrets variable is used and the STRIMZI_IMAGE_PULL_SECRETS variable is ignored.

securityContext

PodSecurityContext

Configures pod-level security attributes and common container settings.

terminationGracePeriodSeconds

integer

The grace period is the duration in seconds after the processes running in the pod are sent a termination signal, and the time when the processes are forcibly halted with a kill signal. Set this value to longer than the expected cleanup time for your process. Value must be a non-negative integer. A zero value indicates delete immediately. You might need to increase the grace period for very large Kafka clusters, so that the Kafka brokers have enough time to transfer their work to another broker before they are terminated. Defaults to 30 seconds.

affinity

Affinity

The pod’s affinity rules.

tolerations

Toleration array

The pod’s tolerations.

priorityClassName

string

The name of the priority class used to assign priority to the pods.

schedulerName

string

The name of the scheduler used to dispatch this Pod. If not specified, the default scheduler will be used.

hostAliases

HostAlias array

The pod’s HostAliases. HostAliases is an optional list of hosts and IPs that will be injected into the Pod’s hosts file if specified.

tmpDirSizeLimit

string

Defines the total amount (for example 1Gi) of local storage required for temporary EmptyDir volume (/tmp). Default value is 5Mi.

enableServiceLinks

boolean

Indicates whether information about services should be injected into Pod’s environment variables.

topologySpreadConstraints

TopologySpreadConstraint array

The pod’s topology spread constraints.

39. InternalServiceTemplate schema reference

Property Property type Description

metadata

MetadataTemplate

Metadata applied to the resource.

ipFamilyPolicy

string (one of [RequireDualStack, SingleStack, PreferDualStack])

Specifies the IP Family Policy used by the service. Available options are SingleStack, PreferDualStack and RequireDualStack. SingleStack is for a single IP family. PreferDualStack is for two IP families on dual-stack configured clusters or a single IP family on single-stack clusters. RequireDualStack fails unless there are two IP families on dual-stack configured clusters. If unspecified, Kubernetes will choose the default value based on the service type.

ipFamilies

string (one or more of [IPv6, IPv4]) array

Specifies the IP Families used by the service. Available options are IPv4 and IPv6. If unspecified, Kubernetes will choose the default value based on the ipFamilyPolicy setting.

40. ResourceTemplate schema reference

41. PodDisruptionBudgetTemplate schema reference

A PodDisruptionBudget (PDB) is a Kubernetes resource that ensures high availability by specifying the minimum number of pods that must be available during planned maintenance or upgrades. Strimzi creates a PDB for every new StrimziPodSet or Deployment. By default, the PDB allows only one pod to be unavailable at any given time. You can increase the number of unavailable pods allowed by changing the default value of the maxUnavailable property.

StrimziPodSet custom resources manage pods using a custom controller that cannot use the maxUnavailable value directly. Instead, the maxUnavailable value is automatically converted to a minAvailable value when creating the PDB resource, which effectively serves the same purpose, as illustrated in the following examples:

  • If there are three broker pods and the maxUnavailable property is set to 1 in the Kafka resource, the minAvailable setting is 2, allowing one pod to be unavailable.

  • If there are three broker pods and the maxUnavailable property is set to 0 (zero), the minAvailable setting is 3, requiring all three broker pods to be available and allowing zero pods to be unavailable.

Example PodDisruptionBudget template configuration
# ...
template:
  podDisruptionBudget:
    metadata:
      labels:
        key1: label1
        key2: label2
      annotations:
        key1: label1
        key2: label2
    maxUnavailable: 1
# ...

41.1. PodDisruptionBudgetTemplate schema properties

Property Property type Description

metadata

MetadataTemplate

Metadata to apply to the PodDisruptionBudgetTemplate resource.

maxUnavailable

integer

Maximum number of unavailable pods to allow automatic Pod eviction. A Pod eviction is allowed when the maxUnavailable number of pods or fewer are unavailable after the eviction. Setting this value to 0 prevents all voluntary evictions, so the pods must be evicted manually. Defaults to 1.

42. ContainerTemplate schema reference

You can set custom security context and environment variables for a container.

The environment variables are defined under the env property as a list of objects with name and value fields. The following example shows two custom environment variables and a custom security context set for the Kafka broker containers:

# ...
template:
  kafkaContainer:
    env:
    - name: EXAMPLE_ENV_1
      value: example.env.one
    - name: EXAMPLE_ENV_2
      value: example.env.two
    securityContext:
      runAsUser: 2000
# ...

Environment variables prefixed with KAFKA_ are internal to Strimzi and should be avoided. If you set a custom environment variable that is already in use by Strimzi, it is ignored and a warning is recorded in the log.

42.1. ContainerTemplate schema properties

Property Property type Description

env

ContainerEnvVar array

Environment variables which should be applied to the container.

securityContext

SecurityContext

Security context for the container.

43. ContainerEnvVar schema reference

Property Property type Description

name

string

The environment variable key.

value

string

The environment variable value.

44. TieredStorageCustom schema reference

Used in: KafkaClusterSpec

To configure the tiered storage feature, set the type property to custom.

RemoteStorageManager is a Kafka interface for managing the interaction between Kafka and remote tiered storage solutions. Custom tiered storage enables the use of a custom RemoteStorageManager configuration. If custom tiered storage is enabled, Strimzi uses the TopicBasedRemoteLogMetadataManager for Remote Log Metadata Management (RLMM) configuration. If you want to use custom tiered storage, you must first add the tiered storage plugin to the Strimzi image by building a custom container image.

Example custom tiered storage configuration
kafka:
  tieredStorage:
    type: custom
    remoteStorageManager:
      className: com.example.kafka.tiered.storage.s3.S3RemoteStorageManager
      classPath: /opt/kafka/plugins/tiered-storage-s3/*
      config:
        # A map with String keys and String values.
        # Key properties are automatically prefixed with `rsm.config.` and appended to Kafka broker config.
        storage.bucket.name: my-bucket
  config:
    ...
    # Additional RLMM configuration can be added through the Kafka config under `spec.kafka.config` using the `rlmm.config.` prefix.
    rlmm.config.remote.log.metadata.topic.replication.factor: 1

44.1. TieredStorageCustom schema properties

The type property is a discriminator that distinguishes use of the TieredStorageCustom type from other subtypes which may be added in the future. It must have the value custom for the type TieredStorageCustom.

Property Property type Description

remoteStorageManager

RemoteStorageManager

Configuration for the Remote Storage Manager.

type

string

Must be custom.

45. RemoteStorageManager schema reference

Property Property type Description

className

string

The class name for the RemoteStorageManager implementation.

classPath

string

The class path for the RemoteStorageManager implementation.

config

map

The additional configuration map for the RemoteStorageManager implementation. Keys will be automatically prefixed with rsm.config., and added to Kafka broker configuration.

46. ZookeeperClusterSpec schema reference

Used in: KafkaSpec

Configures a ZooKeeper cluster.

46.1. config

Use the config properties to configure ZooKeeper options as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the ZooKeeper documentation.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Security (encryption, authentication, and authorization)

  • Listener configuration

  • Configuration of data directories

  • ZooKeeper cluster composition

Properties with the following prefixes cannot be set:

  • 4lw.commands.whitelist

  • authProvider

  • clientPort

  • dataDir

  • dataLogDir

  • quorum.auth

  • reconfigEnabled

  • requireClientAuthScheme

  • secureClientPort

  • server.

  • snapshot.trust.empty

  • standaloneEnabled

  • serverCnxnFactory

  • ssl.

  • sslQuorum

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to ZooKeeper, including the following exceptions to the options configured by Strimzi:

Example ZooKeeper configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  kafka:
    # ...
  zookeeper:
    # ...
    config:
      autopurge.snapRetainCount: 3
      autopurge.purgeInterval: 2
    # ...

46.2. logging

ZooKeeper has a configurable logger:

  • zookeeper.root.logger

ZooKeeper uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  zookeeper:
    # ...
    logging:
      type: inline
      loggers:
        zookeeper.root.logger: INFO
        log4j.logger.org.apache.zookeeper.server.FinalRequestProcessor: TRACE
        log4j.logger.org.apache.zookeeper.server.ZooKeeperServer: DEBUG
    # ...
Note
Setting a log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
  # ...
  zookeeper:
    # ...
    logging:
      type: external
      valueFrom:
        configMapKeyRef:
          name: customConfigMap
          key: zookeeper-log4j.properties
  # ...
Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

46.3. ZookeeperClusterSpec schema properties

Property Property type Description

replicas

integer

The number of pods in the cluster.

image

string

The container image used for ZooKeeper pods. If no image name is explicitly specified, it is determined based on the Kafka version set in spec.kafka.version. The image names are specifically mapped to corresponding versions in the Cluster Operator configuration.

storage

EphemeralStorage, PersistentClaimStorage

Storage configuration (disk). Cannot be updated.

config

map

The ZooKeeper broker config. Properties with the following prefixes cannot be set: server., dataDir, dataLogDir, clientPort, authProvider, quorum.auth, requireClientAuthScheme, snapshot.trust.empty, standaloneEnabled, reconfigEnabled, 4lw.commands.whitelist, secureClientPort, ssl., serverCnxnFactory, sslQuorum (with the exception of: ssl.protocol, ssl.quorum.protocol, ssl.enabledProtocols, ssl.quorum.enabledProtocols, ssl.ciphersuites, ssl.quorum.ciphersuites, ssl.hostnameVerification, ssl.quorum.hostnameVerification).

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

jvmOptions

JvmOptions

JVM Options for pods.

jmxOptions

KafkaJmxOptions

JMX Options for Zookeeper nodes.

resources

ResourceRequirements

CPU and memory resources to reserve.

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

logging

InlineLogging, ExternalLogging

Logging configuration for ZooKeeper.

template

ZookeeperClusterTemplate

Template for ZooKeeper cluster resources. The template allows users to specify how the Kubernetes resources are generated.

47. ZookeeperClusterTemplate schema reference

Property Property type Description

statefulset

StatefulSetTemplate

The statefulset property has been deprecated. Support for StatefulSets was removed in Strimzi 0.35.0. This property is ignored. Template for ZooKeeper StatefulSet.

pod

PodTemplate

Template for ZooKeeper Pods.

clientService

InternalServiceTemplate

Template for ZooKeeper client Service.

nodesService

InternalServiceTemplate

Template for ZooKeeper nodes Service.

persistentVolumeClaim

ResourceTemplate

Template for all ZooKeeper PersistentVolumeClaims.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for ZooKeeper PodDisruptionBudget.

zookeeperContainer

ContainerTemplate

Template for the ZooKeeper container.

serviceAccount

ResourceTemplate

Template for the ZooKeeper service account.

jmxSecret

ResourceTemplate

Template for Secret of the Zookeeper Cluster JMX authentication.

podSet

ResourceTemplate

Template for ZooKeeper StrimziPodSet resource.

48. EntityOperatorSpec schema reference

Used in: KafkaSpec

Property Property type Description

topicOperator

EntityTopicOperatorSpec

Configuration of the Topic Operator.

userOperator

EntityUserOperatorSpec

Configuration of the User Operator.

tlsSidecar

TlsSidecar

TLS sidecar configuration.

template

EntityOperatorTemplate

Template for Entity Operator resources. The template allows users to specify how a Deployment and Pod is generated.

49. EntityTopicOperatorSpec schema reference

Configures the Topic Operator.

49.1. logging

The Topic Operator has a configurable logger:

  • rootLogger.level

The Topic Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.topicOperator field of the Kafka resource Kafka resource to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j2.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: inline
        loggers:
          rootLogger.level: INFO
          logger.top.name: io.strimzi.operator.topic # (1)
          logger.top.level: DEBUG # (2)
          logger.toc.name: io.strimzi.operator.topic.TopicOperator # (3)
          logger.toc.level: TRACE # (4)
          logger.clients.level: DEBUG # (5)
  # ...
  1. Creates a logger for the topic package.

  2. Sets the logging level for the topic package.

  3. Creates a logger for the TopicOperator class.

  4. Sets the logging level for the TopicOperator class.

  5. Changes the logging level for the default clients logger. The clients logger is part of the logging configuration provided with Strimzi. By default, it is set to INFO.

Note
When investigating an issue with the operator, it’s usually sufficient to change the rootLogger to DEBUG to get more detailed logs. However, keep in mind that setting the log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    topicOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: external
        valueFrom:
          configMapKeyRef:
            name: customConfigMap
            key: topic-operator-log4j2.properties
  # ...
Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

49.2. EntityTopicOperatorSpec schema properties

Property Property type Description

watchedNamespace

string

The namespace the Topic Operator should watch.

image

string

The image to use for the Topic Operator.

reconciliationIntervalSeconds

integer

Interval between periodic reconciliations.

zookeeperSessionTimeoutSeconds

integer

Timeout for the ZooKeeper session.

startupProbe

Probe

Pod startup checking.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

resources

ResourceRequirements

CPU and memory resources to reserve.

topicMetadataMaxAttempts

integer

The number of attempts at getting topic metadata.

logging

InlineLogging, ExternalLogging

Logging configuration.

jvmOptions

JvmOptions

JVM Options for pods.

50. EntityUserOperatorSpec schema reference

Configures the User Operator.

50.1. logging

The User Operator has a configurable logger:

  • rootLogger.level

The User Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.userOperator field of the Kafka resource to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j2.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the rootLogger.level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    userOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: inline
        loggers:
          rootLogger.level: INFO
          logger.uop.name: io.strimzi.operator.user # (1)
          logger.uop.level: DEBUG # (2)
          logger.abstractcache.name: io.strimzi.operator.user.operator.cache.AbstractCache # (3)
          logger.abstractcache.level: TRACE # (4)
          logger.jetty.level: DEBUG # (5)

  # ...
  1. Creates a logger for the user package.

  2. Sets the logging level for the user package.

  3. Creates a logger for the AbstractCache class.

  4. Sets the logging level for the AbstractCache class.

  5. Changes the logging level for the default jetty logger. The jetty logger is part of the logging configuration provided with Strimzi. By default, it is set to INFO.

Note
When investigating an issue with the operator, it’s usually sufficient to change the rootLogger to DEBUG to get more detailed logs. However, keep in mind that setting the log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  kafka:
    # ...
  zookeeper:
    # ...
  entityOperator:
    # ...
    userOperator:
      watchedNamespace: my-topic-namespace
      reconciliationIntervalSeconds: 60
      logging:
        type: external
        valueFrom:
          configMapKeyRef:
            name: customConfigMap
            key: user-operator-log4j2.properties
   # ...
Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

50.2. EntityUserOperatorSpec schema properties

Property Property type Description

watchedNamespace

string

The namespace the User Operator should watch.

image

string

The image to use for the User Operator.

reconciliationIntervalSeconds

integer

Interval between periodic reconciliations.

zookeeperSessionTimeoutSeconds

integer

The zookeeperSessionTimeoutSeconds property has been deprecated. This property has been deprecated because ZooKeeper is not used anymore by the User Operator. Timeout for the ZooKeeper session.

secretPrefix

string

The prefix that will be added to the KafkaUser name to be used as the Secret name.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

resources

ResourceRequirements

CPU and memory resources to reserve.

logging

InlineLogging, ExternalLogging

Logging configuration.

jvmOptions

JvmOptions

JVM Options for pods.

51. TlsSidecar schema reference

Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In Strimzi, the TLS sidecar uses TLS to encrypt and decrypt communication between components and ZooKeeper.

The TLS sidecar is used in the Entity Operator.

The TLS sidecar is configured using the tlsSidecar property in Kafka.spec.entityOperator.

The TLS sidecar supports the following additional options:

  • image

  • resources

  • logLevel

  • readinessProbe

  • livenessProbe

The resources property specifies the memory and CPU resources allocated for the TLS sidecar.

The image property configures the container image which will be used.

The readinessProbe and livenessProbe properties configure healthcheck probes for the TLS sidecar.

The logLevel property specifies the logging level. The following logging levels are supported:

  • emerg

  • alert

  • crit

  • err

  • warning

  • notice

  • info

  • debug

The default value is notice.

Example TLS sidecar configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  entityOperator:
    # ...
    tlsSidecar:
      resources:
        requests:
          cpu: 200m
          memory: 64Mi
        limits:
          cpu: 500m
          memory: 128Mi
    # ...

51.1. TlsSidecar schema properties

Property Property type Description

image

string

The docker image for the container.

livenessProbe

Probe

Pod liveness checking.

logLevel

string (one of [emerg, debug, crit, err, alert, warning, notice, info])

The log level for the TLS sidecar. Default value is notice.

readinessProbe

Probe

Pod readiness checking.

resources

ResourceRequirements

CPU and memory resources to reserve.

52. EntityOperatorTemplate schema reference

Property Property type Description

deployment

DeploymentTemplate

Template for Entity Operator Deployment.

pod

PodTemplate

Template for Entity Operator Pods.

topicOperatorContainer

ContainerTemplate

Template for the Entity Topic Operator container.

userOperatorContainer

ContainerTemplate

Template for the Entity User Operator container.

tlsSidecarContainer

ContainerTemplate

Template for the Entity Operator TLS sidecar container.

serviceAccount

ResourceTemplate

Template for the Entity Operator service account.

entityOperatorRole

ResourceTemplate

Template for the Entity Operator Role.

topicOperatorRoleBinding

ResourceTemplate

Template for the Entity Topic Operator RoleBinding.

userOperatorRoleBinding

ResourceTemplate

Template for the Entity Topic Operator RoleBinding.

53. DeploymentTemplate schema reference

Use deploymentStrategy to specify the strategy used to replace old pods with new ones when deployment configuration changes.

Use one of the following values:

  • RollingUpdate: Pods are restarted with zero downtime.

  • Recreate: Pods are terminated before new ones are created.

Using the Recreate deployment strategy has the advantage of not requiring spare resources, but the disadvantage is the application downtime.

Example showing the deployment strategy set to Recreate.
# ...
template:
  deployment:
    deploymentStrategy: Recreate
# ...

This configuration change does not cause a rolling update.

53.1. DeploymentTemplate schema properties

Property Property type Description

metadata

MetadataTemplate

Metadata applied to the resource.

deploymentStrategy

string (one of [RollingUpdate, Recreate])

Pod replacement strategy for deployment configuration changes. Valid values are RollingUpdate and Recreate. Defaults to RollingUpdate.

54. CertificateAuthority schema reference

Used in: KafkaSpec

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for both internal communication within the cluster and to certificates used for client access via Kafka.spec.kafka.listeners.tls.

Property Property type Description

generateCertificateAuthority

boolean

If true then Certificate Authority certificates will be generated automatically. Otherwise the user will need to provide a Secret with the CA certificate. Default is true.

generateSecretOwnerReference

boolean

If true, the Cluster and Client CA Secrets are configured with the ownerReference set to the Kafka resource. If the Kafka resource is deleted when true, the CA Secrets are also deleted. If false, the ownerReference is disabled. If the Kafka resource is deleted when false, the CA Secrets are retained and available for reuse. Default is true.

validityDays

integer

The number of days generated certificates should be valid for. The default is 365.

renewalDays

integer

The number of days in the certificate renewal period. This is the number of days before the a certificate expires during which renewal actions may be performed. When generateCertificateAuthority is true, this will cause the generation of a new certificate. When generateCertificateAuthority is true, this will cause extra logging at WARN level about the pending certificate expiry. Default is 30.

certificateExpirationPolicy

string (one of [replace-key, renew-certificate])

How should CA certificate expiration be handled when generateCertificateAuthority=true. The default is for a new CA certificate to be generated reusing the existing private key.

55. CruiseControlSpec schema reference

Used in: KafkaSpec

Configures a Cruise Control cluster.

Configuration options relate to:

  • Goals configuration

  • Capacity limits for resource distribution goals

55.1. config

Use the config properties to configure Cruise Control options as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Cruise Control documentation.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Security (encryption, authentication, and authorization)

  • Connection to the Kafka cluster

  • Client ID configuration

  • ZooKeeper connectivity

  • Web server configuration

  • Self healing

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • capacity.config.file

  • client.id

  • failed.brokers.zk.path

  • kafka.broker.failure.detection.enable

  • metric.reporter.sampler.bootstrap.servers

  • network.

  • request.reason.required

  • security.

  • self.healing.

  • ssl.

  • topic.config.provider.class

  • two.step.

  • webserver.accesslog.

  • webserver.api.urlprefix

  • webserver.http.

  • webserver.session.path

  • zookeeper.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to Cruise Control, including the following exceptions to the options configured by Strimzi:

Example Cruise Control configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    config:
      # Note that `default.goals` (superset) must also include all `hard.goals` (subset)
      default.goals: >
        com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
        com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
      hard.goals: >
        com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
      cpu.balance.threshold: 1.1
      metadata.max.age.ms: 300000
      send.buffer.bytes: 131072
      webserver.http.cors.enabled: true
      webserver.http.cors.origin: "*"
      webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
    # ...

55.2. Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a HTTP mechanism for controlling access to REST APIs. Restrictions can be on access methods or originating URLs of client applications. You can enable CORS with Cruise Control using the webserver.http.cors.enabled property in the config. When enabled, CORS permits read access to the Cruise Control REST API from applications that have different originating URLs than Strimzi. This allows applications from specified origins to use GET requests to fetch information about the Kafka cluster through the Cruise Control API. For example, applications can fetch information on the current cluster load or the most recent optimization proposal. POST requests are not permitted.

Note
For more information on using CORS with Cruise Control, see REST APIs in the Cruise Control Wiki.
Enabling CORS for Cruise Control

You enable and configure CORS in Kafka.spec.cruiseControl.config.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    config:
      webserver.http.cors.enabled: true # (1)
      webserver.http.cors.origin: "*" # (2)
      webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type" # (3)

    # ...
  1. Enables CORS.

  2. Specifies permitted origins for the Access-Control-Allow-Origin HTTP response header. You can use a wildcard or specify a single origin as a URL. If you use a wildcard, a response is returned following requests from any origin.

  3. Exposes specified header names for the Access-Control-Expose-Headers HTTP response header. Applications in permitted origins can read responses with the specified headers.

55.3. Cruise Control REST API security

The Cruise Control REST API is secured with HTTP Basic authentication and SSL to protect the cluster against potentially destructive Cruise Control operations, such as decommissioning Kafka brokers. We recommend that Cruise Control in Strimzi is only used with these settings enabled.

However, it is possible to disable these settings by specifying the following Cruise Control configuration:

  • To disable the built-in HTTP Basic authentication, set webserver.security.enable to false.

  • To disable the built-in SSL, set webserver.ssl.enable to false.

Cruise Control configuration to disable API authorization, authentication, and SSL
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    config:
      webserver.security.enable: false
      webserver.ssl.enable: false
# ...

55.4. brokerCapacity

Cruise Control uses capacity limits to determine if optimization goals for resource capacity limits are being broken. There are four goals of this type:

  • DiskCapacityGoal - Disk utilization capacity

  • CpuCapacityGoal - CPU utilization capacity

  • NetworkInboundCapacityGoal - Network inbound utilization capacity

  • NetworkOutboundCapacityGoal - Network outbound utilization capacity

You specify capacity limits for Kafka broker resources in the brokerCapacity property in Kafka.spec.cruiseControl . They are enabled by default and you can change their default values. Capacity limits can be set for the following broker resources:

  • cpu - CPU resource in millicores or CPU cores (Default: 1)

  • inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

  • outboundNetwork - Outbound network throughput in byte units per second (Default: 10000KiB/s)

For network throughput, use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second.

Note
Disk and CPU capacity limits are automatically generated by Strimzi, so you do not need to set them. In order to guarantee accurate rebalance proposals when using CPU goals, you can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources. That way, all CPU resources are reserved upfront and are always available. This configuration allows Cruise Control to properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals. In cases where you cannot set CPU requests equal to CPU limits in Kafka.spec.kafka.resources, you can set the CPU capacity manually for the same accuracy.
Example Cruise Control brokerCapacity configuration using bibyte units
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    brokerCapacity:
      cpu: "2"
      inboundNetwork: 10000KiB/s
      outboundNetwork: 10000KiB/s
    # ...

55.5. Capacity overrides

Brokers might be running on nodes with heterogeneous network or CPU resources. If that’s the case, specify overrides that set the network capacity and CPU limits for each broker. The overrides ensure an accurate rebalance between the brokers. Override capacity limits can be set for the following broker resources:

  • cpu - CPU resource in millicores or CPU cores (Default: 1)

  • inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

  • outboundNetwork - Outbound network throughput in byte units per second (Default: 10000KiB/s)

An example of Cruise Control capacity overrides configuration using bibyte units
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
  name: my-cluster
spec:
  # ...
  cruiseControl:
    # ...
    brokerCapacity:
      cpu: "1"
      inboundNetwork: 10000KiB/s
      outboundNetwork: 10000KiB/s
      overrides:
      - brokers: [0]
        cpu: "2.755"
        inboundNetwork: 20000KiB/s
        outboundNetwork: 20000KiB/s
      - brokers: [1, 2]
        cpu: 3000m
        inboundNetwork: 30000KiB/s
        outboundNetwork: 30000KiB/s

CPU capacity is determined using configuration values in the following order of precedence, with the highest priority first:

  1. Kafka.spec.cruiseControl.brokerCapacity.overrides.cpu that define custom CPU capacity limits for individual brokers

  2. Kafka.cruiseControl.brokerCapacity.cpu that defines custom CPU capacity limits for all brokers in the kafka cluster

  3. Kafka.spec.kafka.resources.requests.cpu that defines the CPU resources that are reserved for each broker in the Kafka cluster.

  4. Kafka.spec.kafka.resources.limits.cpu that defines the maximum CPU resources that can be consumed by each broker in the Kafka cluster.

This order of precedence is the sequence in which different configuration values are considered when determining the actual capacity limit for a Kafka broker. For example, broker-specific overrides take precedence over capacity limits for all brokers. If none of the CPU capacity configurations are specified, the default CPU capacity for a Kafka broker is set to 1 CPU core.

For more information, refer to the BrokerCapacity schema reference.

55.6. logging

Cruise Control has its own configurable logger:

  • rootLogger.level

Cruise Control uses the Apache log4j2 logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
  cruiseControl:
    # ...
    logging:
      type: inline
      loggers:
        rootLogger.level: INFO
        logger.exec.name: com.linkedin.kafka.cruisecontrol.executor.Executor # (1)
        logger.exec.level: TRACE # (2)
        logger.go.name: com.linkedin.kafka.cruisecontrol.analyzer.GoalOptimizer # (3)
        logger.go.level: DEBUG # (4)
    # ...
  1. Creates a logger for the Cruise Control Executor class.

  2. Sets the logging level for the Executor class.

  3. Creates a logger for the Cruise Control GoalOptimizer class.

  4. Sets the logging level for the GoalOptimizer class.

Note
When investigating an issue with Cruise Control, it’s usually sufficient to change the rootLogger to DEBUG to get more detailed logs. However, keep in mind that setting the log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
  cruiseControl:
    # ...
    logging:
      type: external
      valueFrom:
        configMapKeyRef:
          name: customConfigMap
          key: cruise-control-log4j.properties
    # ...
Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

55.7. CruiseControlSpec schema properties

Property Property type Description

image

string

The container image used for Cruise Control pods. If no image name is explicitly specified, the image name corresponds to the name specified in the Cluster Operator configuration. If an image name is not defined in the Cluster Operator configuration, a default value is used.

tlsSidecar

TlsSidecar

The tlsSidecar property has been deprecated. TLS sidecar configuration.

resources

ResourceRequirements

CPU and memory resources to reserve for the Cruise Control container.

livenessProbe

Probe

Pod liveness checking for the Cruise Control container.

readinessProbe

Probe

Pod readiness checking for the Cruise Control container.

jvmOptions

JvmOptions

JVM Options for the Cruise Control container.

logging

InlineLogging, ExternalLogging

Logging configuration (Log4j 2) for Cruise Control.

template

CruiseControlTemplate

Template to specify how Cruise Control resources, Deployments and Pods, are generated.

brokerCapacity

BrokerCapacity

The Cruise Control brokerCapacity configuration.

config

map

The Cruise Control configuration. For a full list of configuration options refer to https://github.com/linkedin/cruise-control/wiki/Configurations. Note that properties with the following prefixes cannot be set: bootstrap.servers, client.id, zookeeper., network., security., failed.brokers.zk.path,webserver.http., webserver.api.urlprefix, webserver.session.path, webserver.accesslog., two.step., request.reason.required,metric.reporter.sampler.bootstrap.servers, capacity.config.file, self.healing., ssl., kafka.broker.failure.detection.enable, topic.config.provider.class (with the exception of: ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols, webserver.http.cors.enabled, webserver.http.cors.origin, webserver.http.cors.exposeheaders, webserver.security.enable, webserver.ssl.enable).

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

56. CruiseControlTemplate schema reference

Property Property type Description

deployment

DeploymentTemplate

Template for Cruise Control Deployment.

pod

PodTemplate

Template for Cruise Control Pods.

apiService

InternalServiceTemplate

Template for Cruise Control API Service.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for Cruise Control PodDisruptionBudget.

cruiseControlContainer

ContainerTemplate

Template for the Cruise Control container.

tlsSidecarContainer

ContainerTemplate

The tlsSidecarContainer property has been deprecated. Template for the Cruise Control TLS sidecar container.

serviceAccount

ResourceTemplate

Template for the Cruise Control service account.

57. BrokerCapacity schema reference

Property Property type Description

disk

string

The disk property has been deprecated. The Cruise Control disk capacity setting has been deprecated, is ignored, and will be removed in the future Broker capacity for disk in bytes. Use a number value with either standard Kubernetes byte units (K, M, G, or T), their bibyte (power of two) equivalents (Ki, Mi, Gi, or Ti), or a byte value with or without E notation. For example, 100000M, 100000Mi, 104857600000, or 1e+11.

cpuUtilization

integer

The cpuUtilization property has been deprecated. The Cruise Control CPU capacity setting has been deprecated, is ignored, and will be removed in the future Broker capacity for CPU resource utilization as a percentage (0 - 100).

cpu

string

Broker capacity for CPU resource in cores or millicores. For example, 1, 1.500, 1500m. For more information on valid CPU resource units see https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu.

inboundNetwork

string

Broker capacity for inbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s.

outboundNetwork

string

Broker capacity for outbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s.

overrides

BrokerCapacityOverride array

Overrides for individual brokers. The overrides property lets you specify a different capacity configuration for different brokers.

58. BrokerCapacityOverride schema reference

Used in: BrokerCapacity

Property Property type Description

brokers

integer array

List of Kafka brokers (broker identifiers).

cpu

string

Broker capacity for CPU resource in cores or millicores. For example, 1, 1.500, 1500m. For more information on valid CPU resource units see https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu.

inboundNetwork

string

Broker capacity for inbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s.

outboundNetwork

string

Broker capacity for outbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s.

59. JmxTransSpec schema reference

The type JmxTransSpec has been deprecated.

Used in: KafkaSpec

Property Property type Description

image

string

The image to use for the JmxTrans.

outputDefinitions

JmxTransOutputDefinitionTemplate array

Defines the output hosts that will be referenced later on. For more information on these properties see, JmxTransOutputDefinitionTemplate schema reference.

logLevel

string

Sets the logging level of the JmxTrans deployment.For more information see, JmxTrans Logging Level.

kafkaQueries

JmxTransQueryTemplate array

Queries to send to the Kafka brokers to define what data should be read from each broker. For more information on these properties see, JmxTransQueryTemplate schema reference.

resources

ResourceRequirements

CPU and memory resources to reserve.

template

JmxTransTemplate

Template for JmxTrans resources.

60. JmxTransOutputDefinitionTemplate schema reference

Used in: JmxTransSpec

Property Property type Description

outputType

string

Template for setting the format of the data that will be pushed.For more information see JmxTrans OutputWriters.

host

string

The DNS/hostname of the remote host that the data is pushed to.

port

integer

The port of the remote host that the data is pushed to.

flushDelayInSeconds

integer

How many seconds the JmxTrans waits before pushing a new set of data out.

typeNames

string array

Template for filtering data to be included in response to a wildcard query. For more information see JmxTrans queries.

name

string

Template for setting the name of the output definition. This is used to identify where to send the results of queries should be sent.

61. JmxTransQueryTemplate schema reference

Used in: JmxTransSpec

Property Property type Description

targetMBean

string

If using wildcards instead of a specific MBean then the data is gathered from multiple MBeans. Otherwise if specifying an MBean then data is gathered from that specified MBean.

attributes

string array

Determine which attributes of the targeted MBean should be included.

outputs

string array

List of the names of output definitions specified in the spec.kafka.jmxTrans.outputDefinitions that have defined where JMX metrics are pushed to, and in which data format.

62. JmxTransTemplate schema reference

Used in: JmxTransSpec

Property Property type Description

deployment

DeploymentTemplate

Template for JmxTrans Deployment.

pod

PodTemplate

Template for JmxTrans Pods.

container

ContainerTemplate

Template for JmxTrans container.

serviceAccount

ResourceTemplate

Template for the JmxTrans service account.

63. KafkaExporterSpec schema reference

Used in: KafkaSpec

Property Property type Description

image

string

The container image used for the Kafka Exporter pods. If no image name is explicitly specified, the image name corresponds to the version specified in the Cluster Operator configuration. If an image name is not defined in the Cluster Operator configuration, a default value is used.

groupRegex

string

Regular expression to specify which consumer groups to collect. Default value is .*.

topicRegex

string

Regular expression to specify which topics to collect. Default value is .*.

groupExcludeRegex

string

Regular expression to specify which consumer groups to exclude.

topicExcludeRegex

string

Regular expression to specify which topics to exclude.

resources

ResourceRequirements

CPU and memory resources to reserve.

logging

string

Only log messages with the given severity or above. Valid levels: [info, debug, trace]. Default log level is info.

enableSaramaLogging

boolean

Enable Sarama logging, a Go client library used by the Kafka Exporter.

showAllOffsets

boolean

Whether show the offset/lag for all consumer group, otherwise, only show connected consumer groups.

template

KafkaExporterTemplate

Customization of deployment templates and pods.

livenessProbe

Probe

Pod liveness check.

readinessProbe

Probe

Pod readiness check.

64. KafkaExporterTemplate schema reference

Property Property type Description

deployment

DeploymentTemplate

Template for Kafka Exporter Deployment.

pod

PodTemplate

Template for Kafka Exporter Pods.

service

ResourceTemplate

The service property has been deprecated. The Kafka Exporter service has been removed. Template for Kafka Exporter Service.

container

ContainerTemplate

Template for the Kafka Exporter container.

serviceAccount

ResourceTemplate

Template for the Kafka Exporter service account.

65. KafkaStatus schema reference

Used in: Kafka

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

listeners

ListenerStatus array

Addresses of the internal and external listeners.

kafkaNodePools

UsedNodePoolStatus array

List of the KafkaNodePools used by this Kafka cluster.

clusterId

string

Kafka cluster Id.

operatorLastSuccessfulVersion

string

The version of the Strimzi Cluster Operator which performed the last successful reconciliation.

kafkaVersion

string

The version of Kafka currently deployed in the cluster.

kafkaMetadataVersion

string

The KRaft metadata.version currently used by the Kafka cluster.

kafkaMetadataState

string (one of [PreKRaft, ZooKeeper, KRaftMigration, KRaftDualWriting, KRaftPostMigration, KRaft])

Defines where cluster metadata are stored. Possible values are: ZooKeeper if the metadata are stored in ZooKeeper; KRaftMigration if the controllers are connected to ZooKeeper, brokers are being rolled with Zookeeper migration enabled and connection information to controllers, and the metadata migration process is running; KRaftDualWriting if the metadata migration process finished and the cluster is in dual-write mode; KRaftPostMigration if the brokers are fully KRaft-based but controllers being rolled to disconnect from ZooKeeper; PreKRaft if brokers and controller are fully KRaft-based, metadata are stored in KRaft, but ZooKeeper must be deleted; KRaft if the metadata are stored in KRaft.

66. Condition schema reference

Property Property type Description

type

string

The unique identifier of a condition, used to distinguish between other conditions in the resource.

status

string

The status of the condition, either True, False or Unknown.

lastTransitionTime

string

Last time the condition of a type changed from one status to another. The required format is 'yyyy-MM-ddTHH:mm:ssZ', in the UTC time zone.

reason

string

The reason for the condition’s last transition (a single word in CamelCase).

message

string

Human-readable message indicating details about the condition’s last transition.

67. ListenerStatus schema reference

Used in: KafkaStatus

Property Property type Description

type

string

The type property has been deprecated. The type property is not used anymore. Use the name property with the same value. The name of the listener.

name

string

The name of the listener.

addresses

ListenerAddress array

A list of the addresses for this listener.

bootstrapServers

string

A comma-separated list of host:port pairs for connecting to the Kafka cluster using this listener.

certificates

string array

A list of TLS certificates which can be used to verify the identity of the server when connecting to the given listener. Set only for tls and external listeners.

68. ListenerAddress schema reference

Used in: ListenerStatus

Property Property type Description

host

string

The DNS name or IP address of the Kafka bootstrap service.

port

integer

The port of the Kafka bootstrap service.

69. UsedNodePoolStatus schema reference

Used in: KafkaStatus

Property Property type Description

name

string

The name of the KafkaNodePool used by this Kafka resource.

70. KafkaConnect schema reference

Property Property type Description

spec

KafkaConnectSpec

The specification of the Kafka Connect cluster.

status

KafkaConnectStatus

The status of the Kafka Connect cluster.

71. KafkaConnectSpec schema reference

Used in: KafkaConnect

Configures a Kafka Connect cluster.

71.1. config

Use the config properties to configure Kafka Connect options as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Certain options have default values:

  • group.id with default value connect-cluster

  • offset.storage.topic with default value connect-cluster-offsets

  • config.storage.topic with default value connect-cluster-configs

  • status.storage.topic with default value connect-cluster-status

  • key.converter with default value org.apache.kafka.connect.json.JsonConverter

  • value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the KafkaConnect.spec.config properties.

Exceptions

You can specify and configure the options listed in the Apache Kafka documentation.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Listener and REST interface configuration

  • Plugin path configuration

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • consumer.interceptor.classes

  • listeners.

  • plugin.path

  • producer.interceptor.classes

  • rest.

  • sasl.

  • security.

  • ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to Kafka Connect, including the following exceptions to the options configured by Strimzi:

Example Kafka Connect configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect
spec:
  # ...
  config:
    group.id: my-connect-cluster
    offset.storage.topic: my-connect-cluster-offsets
    config.storage.topic: my-connect-cluster-configs
    status.storage.topic: my-connect-cluster-status
    key.converter: org.apache.kafka.connect.json.JsonConverter
    value.converter: org.apache.kafka.connect.json.JsonConverter
    key.converter.schemas.enable: true
    value.converter.schemas.enable: true
    config.storage.replication.factor: 3
    offset.storage.replication.factor: 3
    status.storage.replication.factor: 3
  # ...
Important
The Cluster Operator does not validate keys or values in the config object provided. If an invalid configuration is provided, the Kafka Connect cluster might not start or might become unstable. In this case, fix the configuration so that the Cluster Operator can roll out the new configuration to all Kafka Connect nodes.

71.2. logging

Kafka Connect has its own configurable loggers:

  • connect.root.logger.level

  • log4j.logger.org.reflections

Further loggers are added depending on the Kafka Connect plugins running.

Use a curl request to get a complete list of Kafka Connect loggers running from any Kafka broker pod:

curl -s http://<connect-cluster-name>-connect-api:8083/admin/loggers/

Kafka Connect uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
  # ...
  logging:
    type: inline
    loggers:
      connect.root.logger.level: INFO
      log4j.logger.org.apache.kafka.connect.runtime.WorkerSourceTask: TRACE
      log4j.logger.org.apache.kafka.connect.runtime.WorkerSinkTask: DEBUG
  # ...
Note
Setting a log level to DEBUG may result in a large amount of log output and may have performance implications.
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: connect-logging.log4j
  # ...

Any available loggers that are not configured have their level set to OFF.

If Kafka Connect was deployed using the Cluster Operator, changes to Kafka Connect logging levels are applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

71.3. KafkaConnectSpec schema properties

Property Property type Description

version

string

The Kafka Connect version. Defaults to the latest version. Consult the user documentation to understand the process required to upgrade or downgrade the version.

replicas

integer

The number of pods in the Kafka Connect group. Defaults to 3.

image

string

The container image used for Kafka Connect pods. If no image name is explicitly specified, it is determined based on the spec.version configuration. The image names are specifically mapped to corresponding versions in the Cluster Operator configuration.

bootstrapServers

string

Bootstrap servers to connect to. This should be given as a comma separated list of <hostname>:_<port>_ pairs.

tls

ClientTls

TLS configuration.

authentication

KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth

Authentication configuration for Kafka Connect.

config

map

The Kafka Connect configuration. Properties with the following prefixes cannot be set: ssl., sasl., security., listeners, plugin.path, rest., bootstrap.servers, consumer.interceptor.classes, producer.interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

resources

ResourceRequirements

The maximum limits for CPU and memory resources and the requested initial resources.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

jvmOptions

JvmOptions

JVM Options for pods.

jmxOptions

KafkaJmxOptions

JMX Options.

logging

InlineLogging, ExternalLogging

Logging configuration for Kafka Connect.

clientRackInitImage

string

The image of the init container used for initializing the client.rack.

rack

Rack

Configuration of the node label which will be used as the client.rack consumer configuration.

tracing

JaegerTracing, OpenTelemetryTracing

The configuration of tracing in Kafka Connect.

template

KafkaConnectTemplate

Template for Kafka Connect and Kafka Mirror Maker 2 resources. The template allows users to specify how the Pods, Service, and other services are generated.

externalConfiguration

ExternalConfiguration

Pass data from Secrets or ConfigMaps to the Kafka Connect pods and use them to configure connectors.

build

Build

Configures how the Connect container image should be built. Optional.

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

72. ClientTls schema reference

Configures TLS trusted certificates for connecting KafkaConnect, KafkaBridge, KafkaMirror, KafkaMirrorMaker2 to the cluster.

72.1. trustedCertificates

Provide a list of secrets using the trustedCertificates property.

72.2. ClientTls schema properties

Property Property type Description

trustedCertificates

CertSecretSource array

Trusted certificates for TLS connection.

73. KafkaClientAuthenticationTls schema reference

To configure mTLS authentication, set the type property to the value tls. mTLS uses a TLS certificate to authenticate.

73.1. certificateAndKey

The certificate is specified in the certificateAndKey property and is always loaded from a Kubernetes secret. In the secret, the certificate must be stored in X509 format under two different keys: public and private.

You can use the secrets created by the User Operator, or you can create your own TLS certificate file, with the keys used for authentication, then create a Secret from the file:

kubectl create secret generic MY-SECRET \
--from-file=MY-PUBLIC-TLS-CERTIFICATE-FILE.crt \
--from-file=MY-PRIVATE.key
Note
mTLS authentication can only be used with TLS connections.
Example mTLS configuration
authentication:
  type: tls
  certificateAndKey:
    secretName: my-secret
    certificate: my-public-tls-certificate-file.crt
    key: private.key

73.2. KafkaClientAuthenticationTls schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationTls type from KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth. It must have the value tls for the type KafkaClientAuthenticationTls.

Property Property type Description

certificateAndKey

CertAndKeySecretSource

Reference to the Secret which holds the certificate and private key pair.

type

string

Must be tls.

74. KafkaClientAuthenticationScramSha256 schema reference

To configure SASL-based SCRAM-SHA-256 authentication, set the type property to scram-sha-256. The SCRAM-SHA-256 authentication mechanism requires a username and password.

74.1. username

Specify the username in the username property.

74.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

echo -n PASSWORD > MY-PASSWORD.txt

You can then create a Secret from the text file, setting your own field name (key) for the password:

kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
Example Secret for SCRAM-SHA-256 client authentication for Kafka Connect
apiVersion: v1
kind: Secret
metadata:
  name: my-connect-secret-name
type: Opaque
data:
  my-connect-password-field: LFTIyFRFlMmU2N2Tm

The secretName property contains the name of the Secret, and the password property contains the name of the key under which the password is stored inside the Secret.

Important
Do not specify the actual password in the password property.
Example SASL-based SCRAM-SHA-256 client authentication configuration for Kafka Connect
authentication:
  type: scram-sha-256
  username: my-connect-username
  passwordSecret:
    secretName: my-connect-secret-name
    password: my-connect-password-field

74.3. KafkaClientAuthenticationScramSha256 schema properties

Property Property type Description

passwordSecret

PasswordSecretSource

Reference to the Secret which holds the password.

type

string

Must be scram-sha-256.

username

string

Username used for the authentication.

75. PasswordSecretSource schema reference

Property Property type Description

password

string

The name of the key in the Secret under which the password is stored.

secretName

string

The name of the Secret containing the password.

76. KafkaClientAuthenticationScramSha512 schema reference

To configure SASL-based SCRAM-SHA-512 authentication, set the type property to scram-sha-512. The SCRAM-SHA-512 authentication mechanism requires a username and password.

76.1. username

Specify the username in the username property.

76.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

echo -n PASSWORD > MY-PASSWORD.txt

You can then create a Secret from the text file, setting your own field name (key) for the password:

kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
Example Secret for SCRAM-SHA-512 client authentication for Kafka Connect
apiVersion: v1
kind: Secret
metadata:
  name: my-connect-secret-name
type: Opaque
data:
  my-connect-password-field: LFTIyFRFlMmU2N2Tm

The secretName property contains the name of the Secret, and the password property contains the name of the key under which the password is stored inside the Secret.

Important
Do not specify the actual password in the password property.
Example SASL-based SCRAM-SHA-512 client authentication configuration for Kafka Connect
authentication:
  type: scram-sha-512
  username: my-connect-username
  passwordSecret:
    secretName: my-connect-secret-name
    password: my-connect-password-field

76.3. KafkaClientAuthenticationScramSha512 schema properties

Property Property type Description

passwordSecret

PasswordSecretSource

Reference to the Secret which holds the password.

type

string

Must be scram-sha-512.

username

string

Username used for the authentication.

77. KafkaClientAuthenticationPlain schema reference

To configure SASL-based PLAIN authentication, set the type property to plain. SASL PLAIN authentication mechanism requires a username and password.

Warning
The SASL PLAIN mechanism will transfer the username and password across the network in cleartext. Only use SASL PLAIN authentication if TLS encryption is enabled.

77.1. username

Specify the username in the username property.

77.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, create a text file that contains the password, in cleartext, to use for authentication:

echo -n PASSWORD > MY-PASSWORD.txt

You can then create a Secret from the text file, setting your own field name (key) for the password:

kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
Example Secret for PLAIN client authentication for Kafka Connect
apiVersion: v1
kind: Secret
metadata:
  name: my-connect-secret-name
type: Opaque
data:
  my-password-field-name: LFTIyFRFlMmU2N2Tm

The secretName property contains the name of the Secret and the password property contains the name of the key under which the password is stored inside the Secret.

Important
Do not specify the actual password in the password property.
An example SASL based PLAIN client authentication configuration
authentication:
  type: plain
  username: my-connect-username
  passwordSecret:
    secretName: my-connect-secret-name
    password: my-password-field-name

77.3. KafkaClientAuthenticationPlain schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationPlain type from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationOAuth. It must have the value plain for the type KafkaClientAuthenticationPlain.

Property Property type Description

passwordSecret

PasswordSecretSource

Reference to the Secret which holds the password.

type

string

Must be plain.

username

string

Username used for the authentication.

78. KafkaClientAuthenticationOAuth schema reference

To configure OAuth client authentication, set the type property to oauth.

OAuth authentication can be configured using one of the following options:

  • Client ID and secret

  • Client ID and refresh token

  • Access token

  • Username and password

  • TLS

Client ID and secret

You can configure the address of your authorization server in the tokenEndpointUri property together with the client ID and client secret used in authentication. The OAuth client will connect to the OAuth server, authenticate using the client ID and secret and get an access token which it will use to authenticate with the Kafka broker. In the clientSecret property, specify a link to a Secret containing the client secret.

An example of OAuth client authentication using client ID and client secret
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  clientSecret:
    secretName: my-client-oauth-secret
    key: client-secret

Optionally, scope and audience can be specified if needed.

Client ID and refresh token

You can configure the address of your OAuth server in the tokenEndpointUri property together with the OAuth client ID and refresh token. The OAuth client will connect to the OAuth server, authenticate using the client ID and refresh token and get an access token which it will use to authenticate with the Kafka broker. In the refreshToken property, specify a link to a Secret containing the refresh token.

An example of OAuth client authentication using client ID and refresh token
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token
Access token

You can configure the access token used for authentication with the Kafka broker directly. In this case, you do not specify the tokenEndpointUri. In the accessToken property, specify a link to a Secret containing the access token.

An example of OAuth client authentication using only an access token
authentication:
  type: oauth
  accessToken:
    secretName: my-access-token-secret
    key: access-token
Username and password

OAuth username and password configuration uses the OAuth Resource Owner Password Grant mechanism. The mechanism is deprecated, and is only supported to enable integration in environments where client credentials (ID and secret) cannot be used. You might need to use user accounts if your access management system does not support another approach or user accounts are required for authentication.

A typical approach is to create a special user account in your authorization server that represents your client application. You then give the account a long randomly generated password and a very limited set of permissions. For example, the account can only connect to your Kafka cluster, but is not allowed to use any other services or login to the user interface.

Consider using a refresh token mechanism first.

You can configure the address of your authorization server in the tokenEndpointUri property together with the client ID, username and the password used in authentication. The OAuth client will connect to the OAuth server, authenticate using the username, the password, the client ID, and optionally even the client secret to obtain an access token which it will use to authenticate with the Kafka broker.

In the passwordSecret property, specify a link to a Secret containing the password.

Normally, you also have to configure a clientId using a public OAuth client. If you are using a confidential OAuth client, you also have to configure a clientSecret.

An example of OAuth client authentication using username and a password with a public client
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  username: my-username
  passwordSecret:
    secretName: my-password-secret-name
    password: my-password-field-name
  clientId: my-public-client-id
An example of OAuth client authentication using a username and a password with a confidential client
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  username: my-username
  passwordSecret:
    secretName: my-password-secret-name
    password: my-password-field-name
  clientId: my-confidential-client-id
  clientSecret:
    secretName: my-confidential-client-oauth-secret
    key: client-secret

Optionally, scope and audience can be specified if needed.

TLS

Accessing the OAuth server using the HTTPS protocol does not require any additional configuration as long as the TLS certificates used by it are signed by a trusted certification authority and its hostname is listed in the certificate.

If your OAuth server is using certificates which are self-signed or are signed by a certification authority which is not trusted, you can configure a list of trusted certificates in the custom resource. The tlsTrustedCertificates property contains a list of secrets with key names under which the certificates are stored. The certificates must be stored in X509 format.

An example of TLS certificates provided
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token
  tlsTrustedCertificates:
    - secretName: oauth-server-ca
      certificate: tls.crt

The OAuth client will by default verify that the hostname of your OAuth server matches either the certificate subject or one of the alternative DNS names. If it is not required, you can disable the hostname verification.

An example of disabled TLS hostname verification
authentication:
  type: oauth
  tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
  clientId: my-client-id
  refreshToken:
    secretName: my-refresh-token-secret
    key: refresh-token
  disableTlsHostnameVerification: true

78.1. KafkaClientAuthenticationOAuth schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationOAuth type from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain. It must have the value oauth for the type KafkaClientAuthenticationOAuth.

Property Property type Description

accessToken

GenericSecretSource

Link to Kubernetes Secret containing the access token which was obtained from the authorization server.

accessTokenIsJwt

boolean

Configure whether access token should be treated as JWT. This should be set to false if the authorization server returns opaque tokens. Defaults to true.

audience

string

OAuth audience to use when authenticating against the authorization server. Some authorization servers require the audience to be explicitly set. The possible values depend on how the authorization server is configured. By default, audience is not specified when performing the token endpoint request.

clientId

string

OAuth Client ID which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI.

clientSecret

GenericSecretSource

Link to Kubernetes Secret containing the OAuth client secret which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI.

connectTimeoutSeconds

integer

The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds.

disableTlsHostnameVerification

boolean

Enable or disable TLS hostname verification. Default value is false.

enableMetrics

boolean

Enable or disable OAuth metrics. Default value is false.

httpRetries

integer

The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries.

httpRetryPauseMs

integer

The pause to take before retrying a failed HTTP request. If not set, the default is to not pause at all but to immediately repeat a request.

includeAcceptHeader

boolean

Whether the Accept header should be set in requests to the authorization servers. The default value is true.

maxTokenExpirySeconds

integer

Set or limit time-to-live of the access tokens to the specified number of seconds. This should be set if the authorization server returns opaque tokens.

passwordSecret

PasswordSecretSource

Reference to the Secret which holds the password.

readTimeoutSeconds

integer

The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds.

refreshToken

GenericSecretSource

Link to Kubernetes Secret containing the refresh token which can be used to obtain access token from the authorization server.

scope

string

OAuth scope to use when authenticating against the authorization server. Some authorization servers require this to be set. The possible values depend on how authorization server is configured. By default scope is not specified when doing the token endpoint request.

tlsTrustedCertificates

CertSecretSource array

Trusted certificates for TLS connection to the OAuth server.

tokenEndpointUri

string

Authorization server token endpoint URI.

type

string

Must be oauth.

username

string

Username used for the authentication.

79. JaegerTracing schema reference

The type JaegerTracing has been deprecated.

The type property is a discriminator that distinguishes use of the JaegerTracing type from OpenTelemetryTracing. It must have the value jaeger for the type JaegerTracing.

Property Property type Description

type

string

Must be jaeger.

80. OpenTelemetryTracing schema reference

The type property is a discriminator that distinguishes use of the OpenTelemetryTracing type from JaegerTracing. It must have the value opentelemetry for the type OpenTelemetryTracing.

Property Property type Description

type

string

Must be opentelemetry.

81. KafkaConnectTemplate schema reference

Property Property type Description

deployment

DeploymentTemplate

The deployment property has been deprecated. Kafka Connect and MirrorMaker 2 operands do not use Deployment resources anymore. This field will be ignored. Template for Kafka Connect Deployment.

podSet

ResourceTemplate

Template for Kafka Connect StrimziPodSet resource.

pod

PodTemplate

Template for Kafka Connect Pods.

apiService

InternalServiceTemplate

Template for Kafka Connect API Service.

headlessService

InternalServiceTemplate

Template for Kafka Connect headless Service.

connectContainer

ContainerTemplate

Template for the Kafka Connect container.

initContainer

ContainerTemplate

Template for the Kafka init container.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for Kafka Connect PodDisruptionBudget.

serviceAccount

ResourceTemplate

Template for the Kafka Connect service account.

clusterRoleBinding

ResourceTemplate

Template for the Kafka Connect ClusterRoleBinding.

buildPod

PodTemplate

Template for Kafka Connect Build Pods. The build pod is used only on Kubernetes.

buildContainer

ContainerTemplate

Template for the Kafka Connect Build container. The build container is used only on Kubernetes.

buildConfig

BuildConfigTemplate

Template for the Kafka Connect BuildConfig used to build new container images. The BuildConfig is used only on OpenShift.

buildServiceAccount

ResourceTemplate

Template for the Kafka Connect Build service account.

jmxSecret

ResourceTemplate

Template for Secret of the Kafka Connect Cluster JMX authentication.

82. BuildConfigTemplate schema reference

Property Property type Description

metadata

MetadataTemplate

Metadata to apply to the PodDisruptionBudgetTemplate resource.

pullSecret

string

Container Registry Secret with the credentials for pulling the base image.

83. ExternalConfiguration schema reference

Configures external storage properties that define configuration options for Kafka Connect connectors.

You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes. Volumes and environment variables are configured in the externalConfiguration property in KafkaConnect.spec or KafkaMirrorMaker2.spec.

When applied, the environment variables and volumes are available for use when developing your connectors.

83.1. ExternalConfiguration schema properties

Property Property type Description

env

ExternalConfigurationEnv array

Makes data from a Secret or ConfigMap available in the Kafka Connect pods as environment variables.

volumes

ExternalConfigurationVolumeSource array

Makes data from a Secret or ConfigMap available in the Kafka Connect pods as volumes.

84. ExternalConfigurationEnv schema reference

Property Property type Description

name

string

Name of the environment variable which will be passed to the Kafka Connect pods. The name of the environment variable cannot start with KAFKA_ or STRIMZI_.

valueFrom

ExternalConfigurationEnvVarSource

Value of the environment variable which will be passed to the Kafka Connect pods. It can be passed either as a reference to Secret or ConfigMap field. The field has to specify exactly one Secret or ConfigMap.

85. ExternalConfigurationEnvVarSource schema reference

Property Property type Description

configMapKeyRef

ConfigMapKeySelector

Reference to a key in a ConfigMap.

secretKeyRef

SecretKeySelector

Reference to a key in a Secret.

86. ExternalConfigurationVolumeSource schema reference

Property Property type Description

configMap

ConfigMapVolumeSource

Reference to a key in a ConfigMap. Exactly one Secret or ConfigMap has to be specified.

name

string

Name of the volume which will be added to the Kafka Connect pods.

secret

SecretVolumeSource

Reference to a key in a Secret. Exactly one Secret or ConfigMap has to be specified.

87. Build schema reference

Used in: KafkaConnectSpec

Configures additional connectors for Kafka Connect deployments.

87.1. output

To build new container images with additional connector plugins, Strimzi requires a container registry where the images can be pushed to, stored, and pulled from. Strimzi does not run its own container registry, so a registry must be provided. Strimzi supports private container registries as well as public registries such as Quay or Docker Hub. The container registry is configured in the .spec.build.output section of the KafkaConnect custom resource. The output configuration, which is required, supports two types: docker and imagestream.

Using Docker registry

To use a Docker registry, you have to specify the type as docker, and the image field with the full name of the new container image. The full name must include:

  • The address of the registry

  • Port number (if listening on a non-standard port)

  • The tag of the new container image

Example valid container image names:

  • docker.io/my-org/my-image/my-tag

  • quay.io/my-org/my-image/my-tag

  • image-registry.image-registry.svc:5000/myproject/kafka-connect-build:latest

Each Kafka Connect deployment must use a separate image, which can mean different tags at the most basic level.

If the registry requires authentication, use the pushSecret to set a name of the Secret with the registry credentials. For the Secret, use the kubernetes.io/dockerconfigjson type and a .dockerconfigjson file to contain the Docker credentials. For more information on pulling an image from a private registry, see Create a Secret based on existing Docker credentials.

Example output configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      type: docker # (1)
      image: my-registry.io/my-org/my-connect-cluster:latest # (2)
      pushSecret: my-registry-credentials # (3)
  #...
  1. (Required) Type of output used by Strimzi.

  2. (Required) Full name of the image used, including the repository and tag.

  3. (Optional) Name of the secret with the container registry credentials.

Using OpenShift ImageStream

Instead of Docker, you can use OpenShift ImageStream to store a new container image. The ImageStream has to be created manually before deploying Kafka Connect. To use ImageStream, set the type to imagestream, and use the image property to specify the name of the ImageStream and the tag used. For example, my-connect-image-stream:latest.

Example output configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      type: imagestream # (1)
      image: my-connect-build:latest # (2)
  #...
  1. (Required) Type of output used by Strimzi.

  2. (Required) Name of the ImageStream and tag.

87.2. plugins

Connector plugins are a set of files that define the implementation required to connect to certain types of external system. The connector plugins required for a container image must be configured using the .spec.build.plugins property of the KafkaConnect custom resource. Each connector plugin must have a name which is unique within the Kafka Connect deployment. Additionally, the plugin artifacts must be listed. These artifacts are downloaded by Strimzi, added to the new container image, and used in the Kafka Connect deployment. The connector plugin artifacts can also include additional components, such as (de)serializers. Each connector plugin is downloaded into a separate directory so that the different connectors and their dependencies are properly sandboxed. Each plugin must be configured with at least one artifact.

Example plugins configuration with two connector plugins
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins: # (1)
      - name: connector-1
        artifacts:
          - type: tgz
            url: <url_to_download_connector_1_artifact>
            sha512sum: <SHA-512_checksum_of_connector_1_artifact>
      - name: connector-2
        artifacts:
          - type: jar
            url: <url_to_download_connector_2_artifact>
            sha512sum: <SHA-512_checksum_of_connector_2_artifact>
  #...
  1. (Required) List of connector plugins and their artifacts.

Strimzi supports the following types of artifacts:

  • JAR files, which are downloaded and used directly

  • TGZ archives, which are downloaded and unpacked

  • ZIP archives, which are downloaded and unpacked

  • Maven artifacts, which uses Maven coordinates

  • Other artifacts, which are downloaded and used directly

Important
Strimzi does not perform any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually, and configure the checksum verification to make sure the same artifact is used in the automated build and in the Kafka Connect deployment.
Using JAR artifacts

JAR artifacts represent a JAR file that is downloaded and added to a container image. To use a JAR artifacts, set the type property to jar, and specify the download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum of the artifact while building the new container image.

Example JAR artifact
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: jar # (1)
            url: https://my-domain.tld/my-jar.jar # (2)
            sha512sum: 589...ab4 # (3)
          - type: jar
            url: https://my-domain.tld/my-jar2.jar
  #...
  1. (Required) Type of artifact.

  2. (Required) URL from which the artifact is downloaded.

  3. (Optional) SHA-512 checksum to verify the artifact.

Using TGZ artifacts

TGZ artifacts are used to download TAR archives that have been compressed using Gzip compression. The TGZ artifact can contain the whole Kafka Connect connector, even when comprising multiple different files. The TGZ artifact is automatically downloaded and unpacked by Strimzi while building the new container image. To use TGZ artifacts, set the type property to tgz, and specify the download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum before unpacking it and building the new container image.

Example TGZ artifact
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: tgz # (1)
            url: https://my-domain.tld/my-connector-archive.tgz # (2)
            sha512sum: 158...jg10 # (3)
  #...
  1. (Required) Type of artifact.

  2. (Required) URL from which the archive is downloaded.

  3. (Optional) SHA-512 checksum to verify the artifact.

Using ZIP artifacts

ZIP artifacts are used to download ZIP compressed archives. Use ZIP artifacts in the same way as the TGZ artifacts described in the previous section. The only difference is you specify type: zip instead of type: tgz.

Using Maven artifacts

maven artifacts are used to specify connector plugin artifacts as Maven coordinates. The Maven coordinates identify plugin artifacts and dependencies so that they can be located and fetched from a Maven repository.

Note
The Maven repository must be accessible for the connector build process to add the artifacts to the container image.
Example Maven artifact
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: maven # (1)
            repository: https://mvnrepository.com # (2)
            group: <maven_group> # (3)
            artifact: <maven_artifact> # (4)
            version:  <maven_version_number> # (5)
  #...
  1. (Required) Type of artifact.

  2. (Optional) Maven repository to download the artifacts from. If you do not specify a repository, Maven Central repository is used by default.

  3. (Required) Maven group ID.

  4. (Required) Maven artifact type.

  5. (Required) Maven version number.

Using other artifacts

other artifacts represent any kind of file that is downloaded and added to a container image. If you want to use a specific name for the artifact in the resulting container image, use the fileName field. If a file name is not specified, the file is named based on the URL hash.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum of the artifact while building the new container image.

Example other artifact
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
  name: my-connect-cluster
spec:
  #...
  build:
    output:
      #...
    plugins:
      - name: my-plugin
        artifacts:
          - type: other  # (1)
            url: https://my-domain.tld/my-other-file.ext  # (2)
            sha512sum: 589...ab4  # (3)
            fileName: name-the-file.ext  # (4)
  #...
  1. (Required) Type of artifact.

  2. (Required) URL from which the artifact is downloaded.

  3. (Optional) SHA-512 checksum to verify the artifact.

  4. (Optional) The name under which the file is stored in the resulting container image.

87.3. Build schema properties

Property Property type Description

output

DockerOutput, ImageStreamOutput

Configures where should the newly built image be stored. Required.

resources

ResourceRequirements

CPU and memory resources to reserve for the build.

plugins

Plugin array

List of connector plugins which should be added to the Kafka Connect. Required.

88. DockerOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the DockerOutput type from ImageStreamOutput. It must have the value docker for the type DockerOutput.

Property Property type Description

image

string

The full name which should be used for tagging and pushing the newly built image. For example quay.io/my-organization/my-custom-connect:latest. Required.

pushSecret

string

Container Registry Secret with the credentials for pushing the newly built image.

additionalKanikoOptions

string array

Configures additional options which will be passed to the Kaniko executor when building the new Connect image. Allowed options are: --customPlatform, --insecure, --insecure-pull, --insecure-registry, --log-format, --log-timestamp, --registry-mirror, --reproducible, --single-snapshot, --skip-tls-verify, --skip-tls-verify-pull, --skip-tls-verify-registry, --verbosity, --snapshotMode, --use-new-run. These options will be used only on Kubernetes where the Kaniko executor is used. They will be ignored on OpenShift. The options are described in the Kaniko GitHub repository. Changing this field does not trigger new build of the Kafka Connect image.

type

string

Must be docker.

89. ImageStreamOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the ImageStreamOutput type from DockerOutput. It must have the value imagestream for the type ImageStreamOutput.

Property Property type Description

image

string

The name and tag of the ImageStream where the newly built image will be pushed. For example my-custom-connect:latest. Required.

type

string

Must be imagestream.

90. Plugin schema reference

Used in: Build

Property Property type Description

name

string

The unique name of the connector plugin. Will be used to generate the path where the connector artifacts will be stored. The name has to be unique within the KafkaConnect resource. The name has to follow the following pattern: ^[a-z][-_a-z0-9]*[a-z]$. Required.

artifacts

JarArtifact, TgzArtifact, ZipArtifact, MavenArtifact, OtherArtifact array

List of artifacts which belong to this connector plugin. Required.

91. JarArtifact schema reference

Used in: Plugin

Property Property type Description

url

string

URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for jar, zip, tgz and other artifacts. Not applicable to the maven artifact type.

sha512sum

string

SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the maven artifact type.

insecure

boolean

By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to true, all TLS verification is disabled and the artifact will be downloaded, even when the server is considered insecure.

type

string

Must be jar.

92. TgzArtifact schema reference

Used in: Plugin

Property Property type Description

url

string

URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for jar, zip, tgz and other artifacts. Not applicable to the maven artifact type.

sha512sum

string

SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the maven artifact type.

insecure

boolean

By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to true, all TLS verification is disabled and the artifact will be downloaded, even when the server is considered insecure.

type

string

Must be tgz.

93. ZipArtifact schema reference

Used in: Plugin

Property Property type Description

url

string

URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for jar, zip, tgz and other artifacts. Not applicable to the maven artifact type.

sha512sum

string

SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the maven artifact type.

insecure

boolean

By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to true, all TLS verification is disabled and the artifact will be downloaded, even when the server is considered insecure.

type

string

Must be zip.

94. MavenArtifact schema reference

Used in: Plugin

The type property is a discriminator that distinguishes use of the MavenArtifact type from JarArtifact, TgzArtifact, ZipArtifact, OtherArtifact. It must have the value maven for the type MavenArtifact.

Property Property type Description

repository

string

Maven repository to download the artifact from. Applicable to the maven artifact type only.

group

string

Maven group id. Applicable to the maven artifact type only.

artifact

string

Maven artifact id. Applicable to the maven artifact type only.

version

string

Maven version number. Applicable to the maven artifact type only.

insecure

boolean

By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to true, all TLS verification is disabled and the artifacts will be downloaded, even when the server is considered insecure.

type

string

Must be maven.

95. OtherArtifact schema reference

Used in: Plugin

Property Property type Description

url

string

URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for jar, zip, tgz and other artifacts. Not applicable to the maven artifact type.

sha512sum

string

SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the maven artifact type.

fileName

string

Name under which the artifact will be stored.

insecure

boolean

By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to true, all TLS verification is disabled and the artifact will be downloaded, even when the server is considered insecure.

type

string

Must be other.

96. KafkaConnectStatus schema reference

Used in: KafkaConnect

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

url

string

The URL of the REST API endpoint for managing and monitoring Kafka Connect connectors.

connectorPlugins

ConnectorPlugin array

The list of connector plugins available in this Kafka Connect deployment.

labelSelector

string

Label selector for pods providing this resource.

replicas

integer

The current number of pods being used to provide this resource.

97. ConnectorPlugin schema reference

Property Property type Description

type

string

The type of the connector plugin. The available types are sink and source.

version

string

The version of the connector plugin.

class

string

The class of the connector plugin.

98. KafkaTopic schema reference

Property Property type Description

spec

KafkaTopicSpec

The specification of the topic.

status

KafkaTopicStatus

The status of the topic.

99. KafkaTopicSpec schema reference

Used in: KafkaTopic

Property Property type Description

partitions

integer

The number of partitions the topic should have. This cannot be decreased after topic creation. It can be increased after topic creation, but it is important to understand the consequences that has, especially for topics with semantic partitioning. When absent this will default to the broker configuration for num.partitions.

replicas

integer

The number of replicas the topic should have. When absent this will default to the broker configuration for default.replication.factor.

config

map

The topic configuration.

topicName

string

The name of the topic. When absent this will default to the metadata.name of the topic. It is recommended to not set this unless the topic name is not a valid Kubernetes resource name.

100. KafkaTopicStatus schema reference

Used in: KafkaTopic

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

topicName

string

Topic name.

topicId

string

The topic’s id. For a KafkaTopic with the ready condition, this will change only if the topic gets deleted and recreated with the same name.

101. KafkaUser schema reference

Property Property type Description

spec

KafkaUserSpec

The specification of the user.

status

KafkaUserStatus

The status of the Kafka User.

102. KafkaUserSpec schema reference

Used in: KafkaUser

Property Property type Description

authentication

KafkaUserTlsClientAuthentication, KafkaUserTlsExternalClientAuthentication, KafkaUserScramSha512ClientAuthentication

Authentication mechanism enabled for this Kafka user. The supported authentication mechanisms are scram-sha-512, tls, and tls-external.

  • scram-sha-512 generates a secret with SASL SCRAM-SHA-512 credentials.

  • tls generates a secret with user certificate for mutual TLS authentication.

  • tls-external does not generate a user certificate. But prepares the user for using mutual TLS authentication using a user certificate generated outside the User Operator. ACLs and quotas set for this user are configured in the CN=<username> format.

Authentication is optional. If authentication is not configured, no credentials are generated. ACLs and quotas set for the user are configured in the <username> format suitable for SASL authentication.

authorization

KafkaUserAuthorizationSimple

Authorization rules for this Kafka user.

quotas

KafkaUserQuotas

Quotas on requests to control the broker resources used by clients. Network bandwidth and request rate quotas can be enforced.Kafka documentation for Kafka User quotas can be found at http://kafka.apache.org/documentation/#design_quotas.

template

KafkaUserTemplate

Template to specify how Kafka User Secrets are generated.

103. KafkaUserTlsClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserTlsClientAuthentication type from KafkaUserTlsExternalClientAuthentication, KafkaUserScramSha512ClientAuthentication. It must have the value tls for the type KafkaUserTlsClientAuthentication.

Property Property type Description

type

string

Must be tls.

104. KafkaUserTlsExternalClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserTlsExternalClientAuthentication type from KafkaUserTlsClientAuthentication, KafkaUserScramSha512ClientAuthentication. It must have the value tls-external for the type KafkaUserTlsExternalClientAuthentication.

Property Property type Description

type

string

Must be tls-external.

105. KafkaUserScramSha512ClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserScramSha512ClientAuthentication type from KafkaUserTlsClientAuthentication, KafkaUserTlsExternalClientAuthentication. It must have the value scram-sha-512 for the type KafkaUserScramSha512ClientAuthentication.

Property Property type Description

password

Password

Specify the password for the user. If not set, a new password is generated by the User Operator.

type

string

Must be scram-sha-512.

106. Password schema reference

Property Property type Description

valueFrom

PasswordSource

Secret from which the password should be read.

107. PasswordSource schema reference

Used in: Password

Property Property type Description

secretKeyRef

SecretKeySelector

Selects a key of a Secret in the resource’s namespace.

108. KafkaUserAuthorizationSimple schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserAuthorizationSimple type from other subtypes which may be added in the future. It must have the value simple for the type KafkaUserAuthorizationSimple.

Property Property type Description

type

string

Must be simple.

acls

AclRule array

List of ACL rules which should be applied to this user.

109. AclRule schema reference

109.1. AclRule schema properties

Property Property type Description

host

string

The host from which the action described in the ACL rule is allowed or denied.

operation

string (one of [Read, Write, Delete, Alter, Describe, All, IdempotentWrite, ClusterAction, Create, AlterConfigs, DescribeConfigs])

The operation property has been deprecated, and should now be configured using spec.authorization.acls[*].operations. Operation which will be allowed or denied. Supported operations are: Read, Write, Create, Delete, Alter, Describe, ClusterAction, AlterConfigs, DescribeConfigs, IdempotentWrite and All.

operations

string (one or more of [Read, Write, Delete, Alter, Describe, All, IdempotentWrite, ClusterAction, Create, AlterConfigs, DescribeConfigs]) array

List of operations which will be allowed or denied. Supported operations are: Read, Write, Create, Delete, Alter, Describe, ClusterAction, AlterConfigs, DescribeConfigs, IdempotentWrite and All.

resource

AclRuleTopicResource, AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource

Indicates the resource for which given ACL rule applies.

type

string (one of [allow, deny])

The type of the rule. Currently the only supported type is allow. ACL rules with type allow are used to allow user to execute the specified operations. Default value is allow.

110. AclRuleTopicResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTopicResource type from AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have the value topic for the type AclRuleTopicResource.

Property Property type Description

type

string

Must be topic.

name

string

Name of resource for which given ACL rule applies. Can be combined with patternType field to use prefix pattern.

patternType

string (one of [prefix, literal])

Describes the pattern used in the resource field. The supported types are literal and prefix. With literal pattern type, the resource field will be used as a definition of a full topic name. With prefix pattern type, the resource name will be used only as a prefix. Default value is literal.

111. AclRuleGroupResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleGroupResource type from AclRuleTopicResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have the value group for the type AclRuleGroupResource.

Property Property type Description

type

string

Must be group.

name

string

Name of resource for which given ACL rule applies. Can be combined with patternType field to use prefix pattern.

patternType

string (one of [prefix, literal])

Describes the pattern used in the resource field. The supported types are literal and prefix. With literal pattern type, the resource field will be used as a definition of a full topic name. With prefix pattern type, the resource name will be used only as a prefix. Default value is literal.

112. AclRuleClusterResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleClusterResource type from AclRuleTopicResource, AclRuleGroupResource, AclRuleTransactionalIdResource. It must have the value cluster for the type AclRuleClusterResource.

Property Property type Description

type

string

Must be cluster.

113. AclRuleTransactionalIdResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTransactionalIdResource type from AclRuleTopicResource, AclRuleGroupResource, AclRuleClusterResource. It must have the value transactionalId for the type AclRuleTransactionalIdResource.

Property Property type Description

type

string

Must be transactionalId.

name

string

Name of resource for which given ACL rule applies. Can be combined with patternType field to use prefix pattern.

patternType

string (one of [prefix, literal])

Describes the pattern used in the resource field. The supported types are literal and prefix. With literal pattern type, the resource field will be used as a definition of a full name. With prefix pattern type, the resource name will be used only as a prefix. Default value is literal.

114. KafkaUserQuotas schema reference

Used in: KafkaUserSpec

Kafka allows a user to set quotas to control the use of resources by clients.

114.1. quotas

You can configure your clients to use the following types of quotas:

  • Network usage quotas specify the byte rate threshold for each group of clients sharing a quota.

  • CPU utilization quotas specify a window for broker requests from clients. The window is the percentage of time for clients to make requests. A client makes requests on the I/O threads and network threads of the broker.

  • Partition mutation quotas limit the number of partition mutations which clients are allowed to make per second.

A partition mutation quota prevents Kafka clusters from being overwhelmed by concurrent topic operations. Partition mutations occur in response to the following types of user requests:

  • Creating partitions for a new topic

  • Adding partitions to an existing topic

  • Deleting partitions from a topic

You can configure a partition mutation quota to control the rate at which mutations are accepted for user requests.

Using quotas for Kafka clients might be useful in a number of situations. Consider a wrongly configured Kafka producer which is sending requests at too high a rate. Such misconfiguration can cause a denial of service to other clients, so the problematic client ought to be blocked. By using a network limiting quota, it is possible to prevent this situation from significantly impacting other clients.

Strimzi supports user-level quotas, but not client-level quotas.

Example Kafka user quota configuration
spec:
  quotas:
    producerByteRate: 1048576
    consumerByteRate: 2097152
    requestPercentage: 55
    controllerMutationRate: 10

For more information about Kafka user quotas, refer to the Apache Kafka documentation.

114.2. KafkaUserQuotas schema properties

Property Property type Description

consumerByteRate

integer

A quota on the maximum bytes per-second that each client group can fetch from a broker before the clients in the group are throttled. Defined on a per-broker basis.

controllerMutationRate

number

A quota on the rate at which mutations are accepted for the create topics request, the create partitions request and the delete topics request. The rate is accumulated by the number of partitions created or deleted.

producerByteRate

integer

A quota on the maximum bytes per-second that each client group can publish to a broker before the clients in the group are throttled. Defined on a per-broker basis.

requestPercentage

integer

A quota on the maximum CPU utilization of each client group as a percentage of network and I/O threads.

115. KafkaUserTemplate schema reference

Used in: KafkaUserSpec

Specify additional labels and annotations for the secret created by the User Operator.

An example showing the KafkaUserTemplate
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
  name: my-user
  labels:
    strimzi.io/cluster: my-cluster
spec:
  authentication:
    type: tls
  template:
    secret:
      metadata:
        labels:
          label1: value1
        annotations:
          anno1: value1
  # ...

115.1. KafkaUserTemplate schema properties

Property Property type Description

secret

ResourceTemplate

Template for KafkaUser resources. The template allows users to specify how the Secret with password or TLS certificates is generated.

116. KafkaUserStatus schema reference

Used in: KafkaUser

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

username

string

Username.

secret

string

The name of Secret where the credentials are stored.

117. KafkaMirrorMaker schema reference

The type KafkaMirrorMaker has been deprecated. Please use KafkaMirrorMaker2 instead.

Property Property type Description

spec

KafkaMirrorMakerSpec

The specification of Kafka MirrorMaker.

status

KafkaMirrorMakerStatus

The status of Kafka MirrorMaker.

118. KafkaMirrorMakerSpec schema reference

Used in: KafkaMirrorMaker

Configures Kafka MirrorMaker.

118.1. include

Use the include property to configure a list of topics that Kafka MirrorMaker mirrors from the source to the target Kafka cluster.

The property allows any regular expression from the simplest case with a single topic name to complex patterns. For example, you can mirror topics A and B using A|B or all topics using *. You can also pass multiple regular expressions separated by commas to the Kafka MirrorMaker.

118.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec

Use the KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec to configure source (consumer) and target (producer) clusters.

Kafka MirrorMaker always works together with two Kafka clusters (source and target). To establish a connection, the bootstrap servers for the source and the target Kafka clusters are specified as comma-separated lists of HOSTNAME:PORT pairs. Each comma-separated list contains one or more Kafka brokers or a Service pointing to Kafka brokers specified as a HOSTNAME:PORT pair.

118.3. logging

Kafka MirrorMaker has its own configurable logger:

  • mirrormaker.root.logger

MirrorMaker uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties. Both logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging. The inline logging specifies the root logger level. You can also set log levels for specific classes or loggers by adding them to the loggers property.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
  # ...
  logging:
    type: inline
    loggers:
      mirrormaker.root.logger: INFO
      log4j.logger.org.apache.kafka.clients.NetworkClient: TRACE
      log4j.logger.org.apache.kafka.common.network.Selector: DEBUG
  # ...
Note
Setting a log level to DEBUG may result in a large amount of log output and may have performance implications.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: mirror-maker-log4j.properties
  # ...
Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

118.4. KafkaMirrorMakerSpec schema properties

Property Property type Description

version

string

The Kafka MirrorMaker version. Defaults to the latest version. Consult the documentation to understand the process required to upgrade or downgrade the version.

replicas

integer

The number of pods in the Deployment.

image

string

The container image used for Kafka MirrorMaker pods. If no image name is explicitly specified, it is determined based on the spec.version configuration. The image names are specifically mapped to corresponding versions in the Cluster Operator configuration.

consumer

KafkaMirrorMakerConsumerSpec

Configuration of source cluster.

producer

KafkaMirrorMakerProducerSpec

Configuration of target cluster.

resources

ResourceRequirements

CPU and memory resources to reserve.

whitelist

string

The whitelist property has been deprecated, and should now be configured using spec.include. List of topics which are included for mirroring. This option allows any regular expression using Java-style regular expressions. Mirroring two topics named A and B is achieved by using the expression A|B. Or, as a special case, you can mirror all topics using the regular expression *. You can also specify multiple regular expressions separated by commas.

include

string

List of topics which are included for mirroring. This option allows any regular expression using Java-style regular expressions. Mirroring two topics named A and B is achieved by using the expression A|B. Or, as a special case, you can mirror all topics using the regular expression *. You can also specify multiple regular expressions separated by commas.

jvmOptions

JvmOptions

JVM Options for pods.

logging

InlineLogging, ExternalLogging

Logging configuration for MirrorMaker.

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

tracing

JaegerTracing, OpenTelemetryTracing

The configuration of tracing in Kafka MirrorMaker.

template

KafkaMirrorMakerTemplate

Template to specify how Kafka MirrorMaker resources, Deployments and Pods, are generated.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

119. KafkaMirrorMakerConsumerSpec schema reference

Configures a MirrorMaker consumer.

119.1. numStreams

Use the consumer.numStreams property to configure the number of streams for the consumer.

You can increase the throughput in mirroring topics by increasing the number of consumer threads. Consumer threads belong to the consumer group specified for Kafka MirrorMaker. Topic partitions are assigned across the consumer threads, which consume messages in parallel.

119.2. offsetCommitInterval

Use the consumer.offsetCommitInterval property to configure an offset auto-commit interval for the consumer.

You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has consumed data from the source Kafka cluster. The time interval is set in milliseconds, with a default value of 60,000.

119.3. config

Use the consumer.config properties to configure Kafka options for the consumer as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for consumers.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Consumer group identifier

  • Interceptors

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • group.id

  • interceptor.classes

  • sasl.

  • security.

  • ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to MirrorMaker, including the following exceptions to the options configured by Strimzi:

Important
The Cluster Operator does not validate keys or values in the config object provided. If an invalid configuration is provided, the MirrorMaker cluster might not start or might become unstable. In this case, fix the configuration so that the Cluster Operator can roll out the new configuration to all MirrorMaker nodes.

119.4. groupId

Use the consumer.groupId property to configure a consumer group identifier for the consumer.

Kafka MirrorMaker uses a Kafka consumer to consume messages, behaving like any other Kafka consumer client. Messages consumed from the source Kafka cluster are mirrored to a target Kafka cluster. A group identifier is required, as the consumer needs to be part of a consumer group for the assignment of partitions.

119.5. KafkaMirrorMakerConsumerSpec schema properties

Property Property type Description

numStreams

integer

Specifies the number of consumer stream threads to create.

offsetCommitInterval

integer

Specifies the offset auto-commit interval in ms. Default value is 60000.

bootstrapServers

string

A list of host:port pairs for establishing the initial connection to the Kafka cluster.

groupId

string

A unique string that identifies the consumer group this consumer belongs to.

authentication

KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth

Authentication configuration for connecting to the cluster.

config

map

The MirrorMaker consumer config. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, group.id, sasl., security., interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

tls

ClientTls

TLS configuration for connecting MirrorMaker to the cluster.

120. KafkaMirrorMakerProducerSpec schema reference

Configures a MirrorMaker producer.

120.1. abortOnSendFailure

Use the producer.abortOnSendFailure property to configure how to handle message send failure from the producer.

By default, if an error occurs when sending a message from Kafka MirrorMaker to a Kafka cluster:

  • The Kafka MirrorMaker container is terminated in Kubernetes.

  • The container is then recreated.

If the abortOnSendFailure option is set to false, message sending errors are ignored.

120.2. config

Use the producer.config properties to configure Kafka options for the producer as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for producers.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Interceptors

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • interceptor.classes

  • sasl.

  • security.

  • ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to MirrorMaker, including the following exceptions to the options configured by Strimzi:

Important
The Cluster Operator does not validate keys or values in the config object provided. If an invalid configuration is provided, the MirrorMaker cluster might not start or might become unstable. In this case, fix the configuration so that the Cluster Operator can roll out the new configuration to all MirrorMaker nodes.

120.3. KafkaMirrorMakerProducerSpec schema properties

Property Property type Description

bootstrapServers

string

A list of host:port pairs for establishing the initial connection to the Kafka cluster.

abortOnSendFailure

boolean

Flag to set the MirrorMaker to exit on a failed send. Default value is true.

authentication

KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth

Authentication configuration for connecting to the cluster.

config

map

The MirrorMaker producer config. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, sasl., security., interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

tls

ClientTls

TLS configuration for connecting MirrorMaker to the cluster.

121. KafkaMirrorMakerTemplate schema reference

Property Property type Description

deployment

DeploymentTemplate

Template for Kafka MirrorMaker Deployment.

pod

PodTemplate

Template for Kafka MirrorMaker Pods.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for Kafka MirrorMaker PodDisruptionBudget.

mirrorMakerContainer

ContainerTemplate

Template for Kafka MirrorMaker container.

serviceAccount

ResourceTemplate

Template for the Kafka MirrorMaker service account.

122. KafkaMirrorMakerStatus schema reference

Used in: KafkaMirrorMaker

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

labelSelector

string

Label selector for pods providing this resource.

replicas

integer

The current number of pods being used to provide this resource.

123. KafkaBridge schema reference

Property Property type Description

spec

KafkaBridgeSpec

The specification of the Kafka Bridge.

status

KafkaBridgeStatus

The status of the Kafka Bridge.

124. KafkaBridgeSpec schema reference

Used in: KafkaBridge

Configures a Kafka Bridge cluster.

Configuration options relate to:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Consumer configuration

  • Producer configuration

  • HTTP configuration

124.1. logging

Kafka Bridge has its own configurable loggers:

  • rootLogger.level

  • logger.<operation-id>

You can replace <operation-id> in the logger.<operation-id> logger to set log levels for specific operations:

  • createConsumer

  • deleteConsumer

  • subscribe

  • unsubscribe

  • poll

  • assign

  • commit

  • send

  • sendToPartition

  • seekToBeginning

  • seekToEnd

  • seek

  • healthy

  • ready

  • openapi

Each operation is defined according OpenAPI specification, and has a corresponding API endpoint through which the bridge receives requests from HTTP clients. You can change the log level on each endpoint to create fine-grained logging information about the incoming and outgoing HTTP requests.

Each logger has to be configured assigning it a name as http.openapi.operation.<operation-id>. For example, configuring the logging level for the send operation logger means defining the following:

logger.send.name = http.openapi.operation.send
logger.send.level = DEBUG

Kafka Bridge uses the Apache log4j2 logger implementation. Loggers are defined in the log4j2.properties file, which has the following default configuration for healthy and ready endpoints:

logger.healthy.name = http.openapi.operation.healthy
logger.healthy.level = WARN
logger.ready.name = http.openapi.operation.ready
logger.ready.level = WARN

The log level of all other operations is set to INFO by default.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to the name of the ConfigMap containing the external logging configuration. The logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key properties are mandatory. Default logging is used if the name or key is not set. Inside the ConfigMap, the logging configuration is described using log4j.properties. For more information about log levels, see Apache logging services.

Here we see examples of inline and external logging.

Inline logging
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
  # ...
  logging:
    type: inline
    loggers:
      rootLogger.level: INFO
      # enabling DEBUG just for send operation
      logger.send.name: "http.openapi.operation.send"
      logger.send.level: DEBUG
  # ...
External logging
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
  # ...
  logging:
    type: external
    valueFrom:
      configMapKeyRef:
        name: customConfigMap
        key: bridge-logj42.properties
  # ...

Any available loggers that are not configured have their level set to OFF.

If the Kafka Bridge was deployed using the Cluster Operator, changes to Kafka Bridge logging levels are applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

124.2. KafkaBridgeSpec schema properties

Property Property type Description

replicas

integer

The number of pods in the Deployment. Defaults to 1.

image

string

The container image used for Kafka Bridge pods. If no image name is explicitly specified, the image name corresponds to the image specified in the Cluster Operator configuration. If an image name is not defined in the Cluster Operator configuration, a default value is used.

bootstrapServers

string

A list of host:port pairs for establishing the initial connection to the Kafka cluster.

tls

ClientTls

TLS configuration for connecting Kafka Bridge to the cluster.

authentication

KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth

Authentication configuration for connecting to the cluster.

http

KafkaBridgeHttpConfig

The HTTP related configuration.

adminClient

KafkaBridgeAdminClientSpec

Kafka AdminClient related configuration.

consumer

KafkaBridgeConsumerSpec

Kafka consumer related configuration.

producer

KafkaBridgeProducerSpec

Kafka producer related configuration.

resources

ResourceRequirements

CPU and memory resources to reserve.

jvmOptions

JvmOptions

Currently not supported JVM Options for pods.

logging

InlineLogging, ExternalLogging

Logging configuration for Kafka Bridge.

clientRackInitImage

string

The image of the init container used for initializing the client.rack.

rack

Rack

Configuration of the node label which will be used as the client.rack consumer configuration.

enableMetrics

boolean

Enable the metrics for the Kafka Bridge. Default is false.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

template

KafkaBridgeTemplate

Template for Kafka Bridge resources. The template allows users to specify how a Deployment and Pod is generated.

tracing

JaegerTracing, OpenTelemetryTracing

The configuration of tracing in Kafka Bridge.

125. KafkaBridgeHttpConfig schema reference

Used in: KafkaBridgeSpec

Configures HTTP access to a Kafka cluster for the Kafka Bridge.

The default HTTP configuration is for the Kafka Bridge to listen on port 8080.

125.1. cors

As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a HTTP mechanism that allows browser access to selected resources from more than one origin. To configure CORS, you define a list of allowed resource origins and HTTP access methods. For the origins, you can use a URL or a Java regular expression.

Example Kafka Bridge HTTP configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  http:
    port: 8080
    cors:
      allowedOrigins: "https://strimzi.io"
      allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
  # ...

125.2. KafkaBridgeHttpConfig schema properties

Property Property type Description

port

integer

The port which is the server listening on.

cors

KafkaBridgeHttpCors

CORS configuration for the HTTP Bridge.

126. KafkaBridgeHttpCors schema reference

Property Property type Description

allowedOrigins

string array

List of allowed origins. Java regular expressions can be used.

allowedMethods

string array

List of allowed HTTP methods.

127. KafkaBridgeAdminClientSpec schema reference

Used in: KafkaBridgeSpec

Property Property type Description

config

map

The Kafka AdminClient configuration used for AdminClient instances created by the bridge.

128. KafkaBridgeConsumerSpec schema reference

Used in: KafkaBridgeSpec

Configures consumer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for consumers.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Consumer group identifier

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • group.id

  • sasl.

  • security.

  • ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to Kafka Bridge, including the following exceptions to the options configured by Strimzi:

Example Kafka Bridge consumer configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  consumer:
    config:
      auto.offset.reset: earliest
      enable.auto.commit: true
    # ...
Important
The Cluster Operator does not validate keys or values in the config object. If an invalid configuration is provided, the Kafka Bridge deployment might not start or might become unstable. In this case, fix the configuration so that the Cluster Operator can roll out the new configuration to all Kafka Bridge nodes.

128.1. KafkaBridgeConsumerSpec schema properties

Property Property type Description

config

map

The Kafka consumer configuration used for consumer instances created by the bridge. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, group.id, sasl., security. (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

129. KafkaBridgeProducerSpec schema reference

Used in: KafkaBridgeSpec

Configures producer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

  • String

  • Number

  • Boolean

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for producers.

However, Strimzi takes care of configuring and managing options related to the following, which cannot be changed:

  • Kafka cluster bootstrap address

  • Security (encryption, authentication, and authorization)

  • Consumer group identifier

Properties with the following prefixes cannot be set:

  • bootstrap.servers

  • sasl.

  • security.

  • ssl.

If the config property contains an option that cannot be changed, it is disregarded, and a warning message is logged to the Cluster Operator log file. All other supported options are forwarded to Kafka Bridge, including the following exceptions to the options configured by Strimzi:

Example Kafka Bridge producer configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
spec:
  # ...
  producer:
    config:
      acks: 1
      delivery.timeout.ms: 300000
    # ...
Important
The Cluster Operator does not validate keys or values in the config object. If an invalid configuration is provided, the Kafka Bridge deployment might not start or might become unstable. In this case, fix the configuration so that the Cluster Operator can roll out the new configuration to all Kafka Bridge nodes.

129.1. KafkaBridgeProducerSpec schema properties

Property Property type Description

config

map

The Kafka producer configuration used for producer instances created by the bridge. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, sasl., security. (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

130. KafkaBridgeTemplate schema reference

Used in: KafkaBridgeSpec

Property Property type Description

deployment

DeploymentTemplate

Template for Kafka Bridge Deployment.

pod

PodTemplate

Template for Kafka Bridge Pods.

apiService

InternalServiceTemplate

Template for Kafka Bridge API Service.

podDisruptionBudget

PodDisruptionBudgetTemplate

Template for Kafka Bridge PodDisruptionBudget.

bridgeContainer

ContainerTemplate

Template for the Kafka Bridge container.

clusterRoleBinding

ResourceTemplate

Template for the Kafka Bridge ClusterRoleBinding.

serviceAccount

ResourceTemplate

Template for the Kafka Bridge service account.

initContainer

ContainerTemplate

Template for the Kafka Bridge init container.

131. KafkaBridgeStatus schema reference

Used in: KafkaBridge

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

url

string

The URL at which external client applications can access the Kafka Bridge.

labelSelector

string

Label selector for pods providing this resource.

replicas

integer

The current number of pods being used to provide this resource.

132. KafkaConnector schema reference

Property Property type Description

spec

KafkaConnectorSpec

The specification of the Kafka Connector.

status

KafkaConnectorStatus

The status of the Kafka Connector.

133. KafkaConnectorSpec schema reference

Used in: KafkaConnector

Property Property type Description

class

string

The Class for the Kafka Connector.

tasksMax

integer

The maximum number of tasks for the Kafka Connector.

autoRestart

AutoRestart

Automatic restart of connector and tasks configuration.

config

map

The Kafka Connector configuration. The following properties cannot be set: connector.class, tasks.max.

pause

boolean

The pause property has been deprecated. Deprecated in Strimzi 0.38.0, use state instead. Whether the connector should be paused. Defaults to false.

state

string (one of [running, paused, stopped])

The state the connector should be in. Defaults to running.

134. AutoRestart schema reference

Configures automatic restarts for connectors and tasks that are in a FAILED state.

When enabled, a back-off algorithm applies the automatic restart to each failed connector and its tasks. An incremental back-off interval is calculated using the formula n * n + n where n represents the number of previous restarts. This interval is capped at a maximum of 60 minutes. Consequently, a restart occurs immediately, followed by restarts after 2, 6, 12, 20, 30, 42, 56 minutes, and then at 60-minute intervals. By default, Strimzi initiates restarts of the connector and its tasks indefinitely. However, you can use the maxRestarts property to set a maximum on the number of restarts. If maxRestarts is configured and the connector still fails even after the final restart attempt, you must then restart the connector manually.

For Kafka Connect connectors, use the autoRestart property of the KafkaConnector resource to enable automatic restarts of failed connectors and tasks.

Enabling automatic restarts of failed connectors for Kafka Connect
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
  name: my-source-connector
spec:
  autoRestart:
    enabled: true

If you prefer, you can also set a maximum limit on the number of restarts.

Enabling automatic restarts of failed connectors for Kafka Connect with limited number of restarts
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
  name: my-source-connector
spec:
  autoRestart:
    enabled: true
    maxRestarts: 10

For MirrorMaker 2, use the autoRestart property of connectors in the KafkaMirrorMaker2 resource to enable automatic restarts of failed connectors and tasks.

Enabling automatic restarts of failed connectors for MirrorMaker 2
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
  name: my-mm2-cluster
spec:
  mirrors:
  - sourceConnector:
      autoRestart:
        enabled: true
      # ...
    heartbeatConnector:
      autoRestart:
        enabled: true
      # ...
    checkpointConnector:
      autoRestart:
        enabled: true
      # ...

134.1. AutoRestart schema properties

Property Property type Description

enabled

boolean

Whether automatic restart for failed connectors and tasks should be enabled or disabled.

maxRestarts

integer

The maximum number of connector restarts that the operator will try. If the connector remains in a failed state after reaching this limit, it must be restarted manually by the user. Defaults to an unlimited number of restarts.

135. KafkaConnectorStatus schema reference

Used in: KafkaConnector

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

autoRestart

AutoRestartStatus

The auto restart status.

connectorStatus

map

The connector status, as reported by the Kafka Connect REST API.

tasksMax

integer

The maximum number of tasks for the Kafka Connector.

topics

string array

The list of topics used by the Kafka Connector.

136. AutoRestartStatus schema reference

Property Property type Description

count

integer

The number of times the connector or task is restarted.

connectorName

string

The name of the connector being restarted.

lastRestartTimestamp

string

The last time the automatic restart was attempted. The required format is 'yyyy-MM-ddTHH:mm:ssZ' in the UTC time zone.

137. KafkaMirrorMaker2 schema reference

Property Property type Description

spec

KafkaMirrorMaker2Spec

The specification of the Kafka MirrorMaker 2 cluster.

status

KafkaMirrorMaker2Status

The status of the Kafka MirrorMaker 2 cluster.

138. KafkaMirrorMaker2Spec schema reference

Property Property type Description

version

string

The Kafka Connect version. Defaults to the latest version. Consult the user documentation to understand the process required to upgrade or downgrade the version.

replicas

integer

The number of pods in the Kafka Connect group. Defaults to 3.

image

string

The container image used for Kafka Connect pods. If no image name is explicitly specified, it is determined based on the spec.version configuration. The image names are specifically mapped to corresponding versions in the Cluster Operator configuration.

connectCluster

string

The cluster alias used for Kafka Connect. The value must match the alias of the target Kafka cluster as specified in the spec.clusters configuration. The target Kafka cluster is used by the underlying Kafka Connect framework for its internal topics.

clusters

KafkaMirrorMaker2ClusterSpec array

Kafka clusters for mirroring.

mirrors

KafkaMirrorMaker2MirrorSpec array

Configuration of the MirrorMaker 2 connectors.

resources

ResourceRequirements

The maximum limits for CPU and memory resources and the requested initial resources.

livenessProbe

Probe

Pod liveness checking.

readinessProbe

Probe

Pod readiness checking.

jvmOptions

JvmOptions

JVM Options for pods.

jmxOptions

KafkaJmxOptions

JMX Options.

logging

InlineLogging, ExternalLogging

Logging configuration for Kafka Connect.

clientRackInitImage

string

The image of the init container used for initializing the client.rack.

rack

Rack

Configuration of the node label which will be used as the client.rack consumer configuration.

tracing

JaegerTracing, OpenTelemetryTracing

The configuration of tracing in Kafka Connect.

template

KafkaConnectTemplate

Template for Kafka Connect and Kafka Mirror Maker 2 resources. The template allows users to specify how the Pods, Service, and other services are generated.

externalConfiguration

ExternalConfiguration

Pass data from Secrets or ConfigMaps to the Kafka Connect pods and use them to configure connectors.

metricsConfig

JmxPrometheusExporterMetrics

Metrics configuration.

139. KafkaMirrorMaker2ClusterSpec schema reference

Configures Kafka clusters for mirroring.

139.1. config

Use the config properties to configure Kafka options.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or disable hostname verification.

139.2. KafkaMirrorMaker2ClusterSpec schema properties

Property Property type Description

alias

string

Alias used to reference the Kafka cluster.

bootstrapServers

string

A comma-separated list of host:port pairs for establishing the connection to the Kafka cluster.

tls

ClientTls

TLS configuration for connecting MirrorMaker 2 connectors to a cluster.

authentication

KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth

Authentication configuration for connecting to the cluster.

config

map

The MirrorMaker 2 cluster config. Properties with the following prefixes cannot be set: ssl., sasl., security., listeners, plugin.path, rest., bootstrap.servers, consumer.interceptor.classes, producer.interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

140. KafkaMirrorMaker2MirrorSpec schema reference

Property Property type Description

sourceCluster

string

The alias of the source cluster used by the Kafka MirrorMaker 2 connectors. The alias must match a cluster in the list at spec.clusters.

targetCluster

string

The alias of the target cluster used by the Kafka MirrorMaker 2 connectors. The alias must match a cluster in the list at spec.clusters.

sourceConnector

KafkaMirrorMaker2ConnectorSpec

The specification of the Kafka MirrorMaker 2 source connector.

heartbeatConnector

KafkaMirrorMaker2ConnectorSpec

The specification of the Kafka MirrorMaker 2 heartbeat connector.

checkpointConnector

KafkaMirrorMaker2ConnectorSpec

The specification of the Kafka MirrorMaker 2 checkpoint connector.

topicsPattern

string

A regular expression matching the topics to be mirrored, for example, "topic1|topic2|topic3". Comma-separated lists are also supported.

topicsBlacklistPattern

string

The topicsBlacklistPattern property has been deprecated, and should now be configured using .spec.mirrors.topicsExcludePattern. A regular expression matching the topics to exclude from mirroring. Comma-separated lists are also supported.

topicsExcludePattern

string

A regular expression matching the topics to exclude from mirroring. Comma-separated lists are also supported.

groupsPattern

string

A regular expression matching the consumer groups to be mirrored. Comma-separated lists are also supported.

groupsBlacklistPattern

string

The groupsBlacklistPattern property has been deprecated, and should now be configured using .spec.mirrors.groupsExcludePattern. A regular expression matching the consumer groups to exclude from mirroring. Comma-separated lists are also supported.

groupsExcludePattern

string

A regular expression matching the consumer groups to exclude from mirroring. Comma-separated lists are also supported.

141. KafkaMirrorMaker2ConnectorSpec schema reference

Property Property type Description

tasksMax

integer

The maximum number of tasks for the Kafka Connector.

config

map

The Kafka Connector configuration. The following properties cannot be set: connector.class, tasks.max.

autoRestart

AutoRestart

Automatic restart of connector and tasks configuration.

pause

boolean

The pause property has been deprecated. Deprecated in Strimzi 0.38.0, use state instead. Whether the connector should be paused. Defaults to false.

state

string (one of [running, paused, stopped])

The state the connector should be in. Defaults to running.

142. KafkaMirrorMaker2Status schema reference

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

url

string

The URL of the REST API endpoint for managing and monitoring Kafka Connect connectors.

autoRestartStatuses

AutoRestartStatus array

List of MirrorMaker 2 connector auto restart statuses.

connectorPlugins

ConnectorPlugin array

The list of connector plugins available in this Kafka Connect deployment.

connectors

map array

List of MirrorMaker 2 connector statuses, as reported by the Kafka Connect REST API.

labelSelector

string

Label selector for pods providing this resource.

replicas

integer

The current number of pods being used to provide this resource.

143. KafkaRebalance schema reference

Property Property type Description

spec

KafkaRebalanceSpec

The specification of the Kafka rebalance.

status

KafkaRebalanceStatus

The status of the Kafka rebalance.

144. KafkaRebalanceSpec schema reference

Used in: KafkaRebalance

Property Property type Description

mode

string (one of [remove-brokers, full, add-brokers])

Mode to run the rebalancing. The supported modes are full, add-brokers, remove-brokers. If not specified, the full mode is used by default.

  • full mode runs the rebalancing across all the brokers in the cluster.

  • add-brokers mode can be used after scaling up the cluster to move some replicas to the newly added brokers.

  • remove-brokers mode can be used before scaling down the cluster to move replicas out of the brokers to be removed.

brokers

integer array

The list of newly added brokers in case of scaling up or the ones to be removed in case of scaling down to use for rebalancing. This list can be used only with rebalancing mode add-brokers and removed-brokers. It is ignored with full mode.

goals

string array

A list of goals, ordered by decreasing priority, to use for generating and executing the rebalance proposal. The supported goals are available at https://github.com/linkedin/cruise-control#goals. If an empty goals list is provided, the goals declared in the default.goals Cruise Control configuration parameter are used.

skipHardGoalCheck

boolean

Whether to allow the hard goals specified in the Kafka CR to be skipped in optimization proposal generation. This can be useful when some of those hard goals are preventing a balance solution being found. Default is false.

rebalanceDisk

boolean

Enables intra-broker disk balancing, which balances disk space utilization between disks on the same broker. Only applies to Kafka deployments that use JBOD storage with multiple disks. When enabled, inter-broker balancing is disabled. Default is false.

excludedTopics

string

A regular expression where any matching topics will be excluded from the calculation of optimization proposals. This expression will be parsed by the java.util.regex.Pattern class; for more information on the supported format consult the documentation for that class.

concurrentPartitionMovementsPerBroker

integer

The upper bound of ongoing partition replica movements going into/out of each broker. Default is 5.

concurrentIntraBrokerPartitionMovements

integer

The upper bound of ongoing partition replica movements between disks within each broker. Default is 2.

concurrentLeaderMovements

integer

The upper bound of ongoing partition leadership movements. Default is 1000.

replicationThrottle

integer

The upper bound, in bytes per second, on the bandwidth used to move replicas. There is no limit by default.

replicaMovementStrategies

string array

A list of strategy class names used to determine the execution order for the replica movements in the generated optimization proposal. By default BaseReplicaMovementStrategy is used, which will execute the replica movements in the order that they were generated.

145. KafkaRebalanceStatus schema reference

Used in: KafkaRebalance

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

sessionId

string

The session identifier for requests to Cruise Control pertaining to this KafkaRebalance resource. This is used by the Kafka Rebalance operator to track the status of ongoing rebalancing operations.

optimizationResult

map

A JSON object describing the optimization result.

146. KafkaNodePool schema reference

Property Property type Description

spec

KafkaNodePoolSpec

The specification of the KafkaNodePool.

status

KafkaNodePoolStatus

The status of the KafkaNodePool.

147. KafkaNodePoolSpec schema reference

Used in: KafkaNodePool

Property Property type Description

replicas

integer

The number of pods in the pool.

storage

EphemeralStorage, PersistentClaimStorage, JbodStorage

Storage configuration (disk). Cannot be updated.

roles

string (one or more of [controller, broker]) array

The roles that the nodes in this pool will have when KRaft mode is enabled. Supported values are 'broker' and 'controller'. This field is required. When KRaft mode is disabled, the only allowed value if broker.

resources

ResourceRequirements

CPU and memory resources to reserve.

jvmOptions

JvmOptions

JVM Options for pods.

template

KafkaNodePoolTemplate

Template for pool resources. The template allows users to specify how the resources belonging to this pool are generated.

148. KafkaNodePoolTemplate schema reference

Property Property type Description

podSet

ResourceTemplate

Template for Kafka StrimziPodSet resource.

pod

PodTemplate

Template for Kafka Pods.

perPodService

ResourceTemplate

Template for Kafka per-pod Services used for access from outside of Kubernetes.

perPodRoute

ResourceTemplate

Template for Kafka per-pod Routes used for access from outside of OpenShift.

perPodIngress

ResourceTemplate

Template for Kafka per-pod Ingress used for access from outside of Kubernetes.

persistentVolumeClaim

ResourceTemplate

Template for all Kafka PersistentVolumeClaims.

kafkaContainer

ContainerTemplate

Template for the Kafka broker container.

initContainer

ContainerTemplate

Template for the Kafka init container.

149. KafkaNodePoolStatus schema reference

Used in: KafkaNodePool

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

nodeIds

integer array

Node IDs used by Kafka nodes in this pool.

clusterId

string

Kafka cluster ID.

roles

string (one or more of [controller, broker]) array

Added in Strimzi 0.39.0. The roles currently assigned to this pool.

replicas

integer

The current number of pods being used to provide this resource.

labelSelector

string

Label selector for pods providing this resource.

150. StrimziPodSet schema reference

Important
StrimziPodSet is an internal Strimzi resource. Information is provided for reference only. Do not create, modify or delete StrimziPodSet resources as this might cause errors.

150.1. StrimziPodSet schema properties

Property Property type Description

spec

StrimziPodSetSpec

The specification of the StrimziPodSet.

status

StrimziPodSetStatus

The status of the StrimziPodSet.

151. StrimziPodSetSpec schema reference

Used in: StrimziPodSet

Property Property type Description

selector

LabelSelector

Selector is a label query which matches all the pods managed by this StrimziPodSet. Only matchLabels is supported. If matchExpressions is set, it will be ignored.

pods

Map array

The Pods managed by this StrimziPodSet.

152. StrimziPodSetStatus schema reference

Used in: StrimziPodSet

Property Property type Description

conditions

Condition array

List of status conditions.

observedGeneration

integer

The generation of the CRD that was last reconciled by the operator.

pods

integer

Number of pods managed by this StrimziPodSet resource.

readyPods

integer

Number of pods managed by this StrimziPodSet resource that are ready.

currentPods

integer

Number of pods managed by this StrimziPodSet resource that have the current revision.