spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-config-map-key
Kafka
schema referenceKafkaSpec
schema referenceKafkaClusterSpec
schema referenceGenericKafkaListener
schema referenceKafkaListenerAuthenticationTls
schema referenceKafkaListenerAuthenticationScramSha512
schema referenceKafkaListenerAuthenticationOAuth
schema referenceGenericSecretSource
schema referenceCertSecretSource
schema referenceKafkaListenerAuthenticationCustom
schema referenceGenericKafkaListenerConfiguration
schema referenceCertAndKeySecretSource
schema referenceGenericKafkaListenerConfigurationBootstrap
schema referenceGenericKafkaListenerConfigurationBroker
schema referenceEphemeralStorage
schema referencePersistentClaimStorage
schema referencePersistentClaimStorageOverride
schema referenceJbodStorage
schema referenceKafkaAuthorizationSimple
schema referenceKafkaAuthorizationOpa
schema referenceKafkaAuthorizationKeycloak
schema referenceKafkaAuthorizationCustom
schema referenceRack
schema referenceProbe
schema referenceJvmOptions
schema referenceSystemProperty
schema referenceKafkaJmxOptions
schema referenceKafkaJmxAuthenticationPassword
schema referenceJmxPrometheusExporterMetrics
schema referenceExternalConfigurationReference
schema referenceInlineLogging
schema referenceExternalLogging
schema referenceKafkaClusterTemplate
schema referenceStatefulSetTemplate
schema referenceMetadataTemplate
schema referencePodTemplate
schema referenceInternalServiceTemplate
schema referenceResourceTemplate
schema referencePodDisruptionBudgetTemplate
schema referenceContainerTemplate
schema referenceContainerEnvVar
schema referenceZookeeperClusterSpec
schema referenceZookeeperClusterTemplate
schema referenceEntityOperatorSpec
schema referenceEntityTopicOperatorSpec
schema referenceEntityUserOperatorSpec
schema referenceTlsSidecar
schema referenceEntityOperatorTemplate
schema referenceDeploymentTemplate
schema referenceCertificateAuthority
schema referenceCruiseControlSpec
schema referenceCruiseControlTemplate
schema referenceBrokerCapacity
schema referenceBrokerCapacityOverride
schema referenceJmxTransSpec
schema referenceJmxTransOutputDefinitionTemplate
schema referenceJmxTransQueryTemplate
schema referenceJmxTransTemplate
schema referenceKafkaExporterSpec
schema referenceKafkaExporterTemplate
schema referenceKafkaStatus
schema referenceCondition
schema referenceListenerStatus
schema referenceListenerAddress
schema referenceKafkaConnect
schema referenceKafkaConnectSpec
schema referenceClientTls
schema referenceKafkaClientAuthenticationTls
schema referenceKafkaClientAuthenticationScramSha256
schema referencePasswordSecretSource
schema referenceKafkaClientAuthenticationScramSha512
schema referenceKafkaClientAuthenticationPlain
schema referenceKafkaClientAuthenticationOAuth
schema referenceJaegerTracing
schema referenceOpenTelemetryTracing
schema referenceKafkaConnectTemplate
schema referenceBuildConfigTemplate
schema referenceExternalConfiguration
schema referenceExternalConfigurationEnv
schema referenceExternalConfigurationEnvVarSource
schema referenceExternalConfigurationVolumeSource
schema referenceBuild
schema referenceDockerOutput
schema referenceImageStreamOutput
schema referencePlugin
schema referenceJarArtifact
schema referenceTgzArtifact
schema referenceZipArtifact
schema referenceMavenArtifact
schema referenceOtherArtifact
schema referenceKafkaConnectStatus
schema referenceConnectorPlugin
schema referenceKafkaTopic
schema referenceKafkaTopicSpec
schema referenceKafkaTopicStatus
schema referenceKafkaUser
schema referenceKafkaUserSpec
schema referenceKafkaUserTlsClientAuthentication
schema referenceKafkaUserTlsExternalClientAuthentication
schema referenceKafkaUserScramSha512ClientAuthentication
schema referencePassword
schema referencePasswordSource
schema referenceKafkaUserAuthorizationSimple
schema referenceAclRule
schema referenceAclRuleTopicResource
schema referenceAclRuleGroupResource
schema referenceAclRuleClusterResource
schema referenceAclRuleTransactionalIdResource
schema referenceKafkaUserQuotas
schema referenceKafkaUserTemplate
schema referenceKafkaUserStatus
schema referenceKafkaMirrorMaker
schema referenceKafkaMirrorMakerSpec
schema referenceKafkaMirrorMakerConsumerSpec
schema referenceKafkaMirrorMakerProducerSpec
schema referenceKafkaMirrorMakerTemplate
schema referenceKafkaMirrorMakerStatus
schema referenceKafkaBridge
schema referenceKafkaBridgeSpec
schema referenceKafkaBridgeHttpConfig
schema referenceKafkaBridgeHttpCors
schema referenceKafkaBridgeAdminClientSpec
schema referenceKafkaBridgeConsumerSpec
schema referenceKafkaBridgeProducerSpec
schema referenceKafkaBridgeTemplate
schema referenceKafkaBridgeStatus
schema referenceKafkaConnector
schema referenceKafkaConnectorSpec
schema referenceAutoRestart
schema referenceKafkaConnectorStatus
schema referenceAutoRestartStatus
schema referenceKafkaMirrorMaker2
schema referenceKafkaMirrorMaker2Spec
schema referenceKafkaMirrorMaker2ClusterSpec
schema referenceKafkaMirrorMaker2MirrorSpec
schema referenceKafkaMirrorMaker2ConnectorSpec
schema referenceKafkaMirrorMaker2Status
schema referenceKafkaRebalance
schema referenceKafkaRebalanceSpec
schema referenceKafkaRebalanceStatus
schema referenceStrimzi simplifies the process of running Apache Kafka in a Kubernetes cluster.
This guide describes how to configure and manage a Strimzi deployment.
Use custom resources to configure your Strimzi deployment.
You can use custom resources to configure and create instances of the following components:
Kafka clusters
Kafka Connect clusters
Kafka MirrorMaker
Kafka Bridge
Cruise Control
You can also use custom resource configuration to manage your instances or modify your deployment to introduce additional features. This might include configuration that supports the following:
Securing client access to Kafka brokers
Accessing Kafka brokers from outside the cluster
Creating topics
Creating users (clients)
Controlling feature gates
Changing logging frequency
Allocating resource limits and requests
Introducing features, such as Strimzi Drain Cleaner, Cruise Control, or distributed tracing.
The Custom resource API reference describes the properties you can use in your configuration.
Use ConfigMap
resources to add specific configuration to your Strimzi deployment.
ConfigMaps use key-value pairs to store non-confidential data.
Configuration data added to ConfigMaps is maintained in one place and can be reused amongst components.
ConfigMaps can only store configuration data related to the following:
Logging configuration
Metrics configuration
External configuration for Kafka Connect connectors
You can’t use ConfigMaps for other areas of configuration.
When you configure a component, you can add a reference to a ConfigMap using the configMapKeyRef
property.
For example, you can use configMapKeyRef
to reference a ConfigMap that provides configuration for logging.
You might use a ConfigMap to pass a Log4j configuration file.
You add the reference to the logging
configuration.
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-config-map-key
To use a ConfigMap for metrics configuration, you add a reference to the metricsConfig
configuration of the component in the same way.
ExternalConfiguration
properties make data from a ConfigMap (or Secret) mounted to a pod available as environment variables or volumes.
You can use external configuration data for the connectors used by Kafka Connect.
The data might be related to an external data source, providing the values needed for the connector to communicate with that data source.
For example, you can use the configMapKeyRef
property to pass configuration data from a ConfigMap as an environment variable.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
externalConfiguration:
env:
- name: MY_ENVIRONMENT_VARIABLE
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
If you are using ConfigMaps that are managed externally, use configuration providers to load the data in the ConfigMaps. For more information on using configuration providers, see Loading configuration values from external sources.
Strimzi creates its own ConfigMaps and other resources when it is deployed to Kubernetes. The ConfigMaps contain data necessary for running components. The ConfigMaps created by Strimzi must not be edited.
Make sure that any custom ConfigMaps you create do not have the same name as these default ConfigMaps. If they have the same name, they will be overwritten. For example, if your ConfigMap has the same name as the ConfigMap for the Kafka cluster, it will be overwritten when there is an update to the Kafka cluster.
User-replaced values, also known as replaceables, are shown in italics with angle brackets (< >).
Underscores ( _ ) are used for multi-word values.
If the value refers to code or commands, monospace
is also used.
For example, in the following code, you will want to replace <my_namespace>
with the name of your namespace:
sed -i 's/namespace: .*/namespace: <my_namespace>/' install/cluster-operator/*RoleBinding*.yaml
Configure your Strimzi deployment using custom resources. Strimzi provides example configuration files, which can serve as a starting point when building your own Kafka component configuration for deployment.
Note
|
Labels applied to a custom resource are also applied to the Kubernetes resources making up its cluster. This provides a convenient mechanism for resources to be labeled as required. |
You can use Prometheus and Grafana to monitor your Strimzi deployment. For more information, see Introducing metrics to Kafka.
Configure a Kafka deployment using the Kafka
resource.
A Kafka cluster is deployed with a ZooKeeper cluster, so configuration options are also available for ZooKeeper within the Kafka
resource.
The Entity Operator comprises the Topic Operator and User Operator.
You can also configure entityOperator
properties in the Kafka
resource to include the Topic Operator and User Operator in the deployment.
Kafka
schema reference describes the full schema of the Kafka
resource.
For more information about Apache Kafka, see the Apache Kafka documentation.
You configure listeners for connecting clients to Kafka brokers.
For more information on configuring listeners, see GenericKafkaListener
schema reference.
When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to enable encryption and authentication within your cluster. If required, you can manually renew the cluster and clients CA certificates before their renewal period starts. You can also replace the keys used by the cluster and clients CA certificates. For more information, see Renewing CA certificates manually and Replacing private keys.
Use the properties of the Kafka
resource to configure your Kafka deployment.
As well as configuring Kafka, you can add configuration for ZooKeeper and the Strimzi Operators. Common configuration properties, such as logging and healthchecks, are configured independently for each component.
This procedure shows only some of the possible configuration options, but those that are particularly important include:
Resource requests (CPU / Memory)
JVM options for maximum and minimum memory allocation
Listeners (and authentication of clients)
Authentication
Storage
Rack awareness
Metrics
Cruise Control for cluster rebalancing
The inter.broker.protocol.version
property for the Kafka config
must be the version supported by the specified Kafka version (spec.kafka.version
).
The property represents the version of Kafka protocol used in a Kafka cluster.
From Kafka 3.0.0, when the inter.broker.protocol.version
is set to 3.0
or higher, the log.message.format.version
option is ignored and doesn’t need to be set.
An update to the inter.broker.protocol.version
is required when upgrading your Kafka version.
For more information, see Upgrading Kafka.
A Kubernetes cluster
A running Cluster Operator
See the Deploying and Upgrading Strimzi guide for instructions on deploying a:
Edit the spec
properties for the Kafka
resource.
The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
replicas: 3 (1)
version: 3.4.0 (2)
logging: (3)
type: inline
loggers:
kafka.root.logger.level: "INFO"
resources: (4)
requests:
memory: 64Gi
cpu: "8"
limits:
memory: 64Gi
cpu: "12"
readinessProbe: (5)
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
jvmOptions: (6)
-Xms: 8192m
-Xmx: 8192m
image: my-org/my-image:latest (7)
listeners: (8)
- name: plain (9)
port: 9092 (10)
type: internal (11)
tls: false (12)
configuration:
useServiceDnsDomain: true (13)
- name: tls
port: 9093
type: internal
tls: true
authentication: (14)
type: tls
- name: external (15)
port: 9094
type: route
tls: true
configuration:
brokerCertChainAndKey: (16)
secretName: my-secret
certificate: my-certificate.crt
key: my-key.key
authorization: (17)
type: simple
config: (18)
auto.create.topics.enable: "false"
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
inter.broker.protocol.version: "3.4"
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" (19)
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
storage: (20)
type: persistent-claim (21)
size: 10000Gi (22)
rack: (23)
topologyKey: topology.kubernetes.io/zone
metricsConfig: (24)
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef: (25)
name: my-config-map
key: my-key
# ...
zookeeper: (26)
replicas: 3 (27)
logging: (28)
type: inline
loggers:
zookeeper.root.logger: "INFO"
resources:
requests:
memory: 8Gi
cpu: "2"
limits:
memory: 8Gi
cpu: "2"
jvmOptions:
-Xms: 4096m
-Xmx: 4096m
storage:
type: persistent-claim
size: 1000Gi
metricsConfig:
# ...
entityOperator: (29)
tlsSidecar: (30)
resources:
requests:
cpu: 200m
memory: 64Mi
limits:
cpu: 500m
memory: 128Mi
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging: (31)
type: inline
loggers:
rootLogger.level: "INFO"
resources:
requests:
memory: 512Mi
cpu: "1"
limits:
memory: 512Mi
cpu: "1"
userOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging: (32)
type: inline
loggers:
rootLogger.level: INFO
resources:
requests:
memory: 512Mi
cpu: "1"
limits:
memory: 512Mi
cpu: "1"
kafkaExporter: (33)
# ...
cruiseControl: (34)
# ...
Kafka version, which can be changed to a supported version by following the upgrade procedure.
Kafka loggers and log levels added directly (inline
) or indirectly (external
) through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
key. For the Kafka kafka.root.logger.level
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.
Requests for reservation of supported resources, currently cpu
and memory
, and limits to specify the maximum resources that can be consumed.
Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka.
ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
Listeners configure how clients connect to the Kafka cluster via bootstrap addresses. Listeners are configured as internal or external listeners for connection from inside or outside the Kubernetes cluster.
Name to identify the listener. Must be unique within the Kafka cluster.
Port number used by the listener inside Kafka. The port number has to be unique within a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on the listener type, the port number might not be the same as the port number that connects Kafka clients.
Listener type specified as internal
or cluster-ip
(to expose Kafka using per-broker ClusterIP
services), or for external listeners, as route
(OpenShift only), loadbalancer
, nodeport
or ingress
(Kubernetes only).
Enables TLS encryption for each listener. Default is false
. TLS encryption is not required for route
listeners.
Defines whether the fully-qualified DNS names including the cluster service suffix (usually .cluster.local
) are assigned.
Listener authentication mechanism specified as mTLS, SCRAM-SHA-512, or token-based OAuth 2.0.
External listener configuration specifies how the Kafka cluster is exposed outside Kubernetes, such as through a route
, loadbalancer
or nodeport
.
Optional configuration for a Kafka listener certificate managed by an external CA (certificate authority). The brokerCertChainAndKey
specifies a Secret
that contains a server certificate and a private key. You can configure Kafka listener certificates on any listener with enabled TLS encryption.
Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker. Simple authorization uses the AclAuthorizer
Kafka plugin.
Broker configuration. Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.
Storage is configured as ephemeral
, persistent-claim
or jbod
.
Storage size for persistent volumes may be increased and additional volumes may be added to JBOD storage.
Persistent storage has additional configuration options, such as a storage id
and class
for dynamic volume provisioning.
Rack awareness configuration to spread replicas across different racks, data centers, or availability zones. The topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standard topology.kubernetes.io/zone
label.
Prometheus metrics enabled. In this example, metrics are configured for the Prometheus JMX Exporter (the default metrics exporter).
Prometheus rules for exporting metrics to a Grafana dashboard through the Prometheus JMX Exporter, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key
.
ZooKeeper-specific configuration, which contains properties similar to the Kafka configuration.
The number of ZooKeeper nodes. ZooKeeper clusters or ensembles usually run with an odd number of nodes, typically three, five, or seven. The majority of nodes must be available in order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will stop responding to clients and the Kafka brokers will stop working. Having a stable and highly available ZooKeeper cluster is crucial for Strimzi.
Specified ZooKeeper loggers and log levels.
Entity Operator configuration, which specifies the configuration for the Topic Operator and User Operator.
Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for secure communication with ZooKeeper.
Specified Topic Operator loggers and log levels. This example uses inline
logging.
Specified User Operator loggers and log levels.
Kafka Exporter configuration. Kafka Exporter is an optional component for extracting metrics data from Kafka brokers, in particular consumer lag data. For Kafka Exporter to be able to work properly, consumer groups need to be in use.
Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.
Create or update the resource:
kubectl apply -f <kafka_configuration_file>
The Entity Operator is responsible for managing Kafka-related entities in a running Kafka cluster.
The Entity Operator comprises the:
Topic Operator to manage Kafka topics
User Operator to manage Kafka users
Through Kafka
resource configuration, the Cluster Operator can deploy the Entity Operator, including one or both operators, when deploying a Kafka cluster.
The operators are automatically configured to manage the topics and users of the Kafka cluster. The Topic Operator and User Operator can only watch a single namespace.
Note
|
When deployed, the Entity Operator pod contains the operators according to the deployment configuration. |
Use the entityOperator
property in Kafka.spec
to configure the Entity Operator.
The entityOperator
property supports several sub-properties:
tlsSidecar
topicOperator
userOperator
template
The tlsSidecar
property contains the configuration of the TLS sidecar container, which is used to communicate with ZooKeeper.
The template
property contains the configuration of the Entity Operator pod, such as labels, annotations, affinity, and tolerations.
For more information on configuring templates, see Customizing Kubernetes resources.
The topicOperator
property contains the configuration of the Topic Operator.
When this option is missing, the Entity Operator is deployed without the Topic Operator.
The userOperator
property contains the configuration of the User Operator.
When this option is missing, the Entity Operator is deployed without the User Operator.
For more information on the properties used to configure the Entity Operator, see the EntityUserOperatorSpec
schema reference.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
topicOperator: {}
userOperator: {}
If an empty object ({}
) is used for the topicOperator
and userOperator
, all properties use their default values.
When both topicOperator
and userOperator
properties are missing, the Entity Operator is not deployed.
Topic Operator deployment can be configured using additional options inside the topicOperator
object.
The following properties are supported:
watchedNamespace
The Kubernetes namespace in which the Topic Operator watches for KafkaTopic
resources.
Default is the namespace where the Kafka cluster is deployed.
reconciliationIntervalSeconds
The interval between periodic reconciliations in seconds.
Default 120
.
zookeeperSessionTimeoutSeconds
The ZooKeeper session timeout in seconds.
Default 18
.
topicMetadataMaxAttempts
The number of attempts at getting topic metadata from Kafka.
The time between each attempt is defined as an exponential back-off.
Consider increasing this value when topic creation might take more time due to the number of partitions or replicas.
Default 6
.
image
The image
property can be used to configure the container image which will be used.
For more details about configuring custom container images, see image
.
resources
The resources
property configures the amount of resources allocated to the Topic Operator.
For more details about resource request and limit configuration, see resources
.
logging
The logging
property configures the logging of the Topic Operator.
For more details, see logging
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
# ...
User Operator deployment can be configured using additional options inside the userOperator
object.
The following properties are supported:
watchedNamespace
The Kubernetes namespace in which the User Operator watches for KafkaUser
resources.
Default is the namespace where the Kafka cluster is deployed.
reconciliationIntervalSeconds
The interval between periodic reconciliations in seconds.
Default 120
.
image
The image
property can be used to configure the container image which will be used.
For more details about configuring custom container images, see image
.
resources
The resources
property configures the amount of resources allocated to the User Operator.
For more details about resource request and limit configuration, see resources
.
logging
The logging
property configures the logging of the User Operator.
For more details, see logging
.
secretPrefix
The secretPrefix
property adds a prefix to the name of all Secrets created from the KafkaUser resource. For example, secretPrefix: kafka-
would prefix all Secret names with kafka-
. So a KafkaUser named my-user
would create a Secret named kafka-my-user
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
userOperator:
watchedNamespace: my-user-namespace
reconciliationIntervalSeconds: 60
# ...
As stateful applications, Kafka and ZooKeeper store data on disk. Strimzi supports three storage types for this data:
Ephemeral (Recommended for development only)
Persistent
JBOD (Kafka only not ZooKeeper)
When configuring a Kafka
resource, you can specify the type of storage used by the Kafka broker and its corresponding ZooKeeper node. You configure the storage type using the storage
property in the following resources:
Kafka.spec.kafka
Kafka.spec.zookeeper
The storage type is configured in the type
field.
Refer to the schema reference for more information on storage configuration properties:
Warning
|
The storage type cannot be changed after a Kafka cluster is deployed. |
For Strimzi to work well, an efficient data storage infrastructure is essential. We strongly recommend using block storage. Strimzi is only tested for use with block storage. File storage, such as NFS, is not tested and there is no guarantee it will work.
Choose one of the following options for your block storage:
A cloud-based block storage solution, such as Amazon Elastic Block Store (EBS)
Persistent storage using local persistent volumes
Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI
Note
|
Strimzi does not require Kubernetes raw block volumes. |
Kafka uses a file system for storing messages. Strimzi is compatible with the XFS and ext4 file systems, which are commonly used with Kafka. Consider the underlying architecture and requirements of your deployment when choosing and setting up your file system.
For more information, refer to Filesystem Selection in the Kafka documentation.
Use separate disks for Apache Kafka and ZooKeeper.
Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective with ZooKeeper, which requires fast, low latency data access.
Note
|
You do not need to provision replicated storage because Kafka and ZooKeeper both have built-in data replication. |
Ephemeral data storage is transient. All pods on a node share a local ephemeral storage space. Data is retained for as long as the pod that uses it is running. The data is lost when a pod is deleted. Although a pod can recover data in a highly available environment.
Because of its transient nature, ephemeral storage is only recommended for development and testing.
Ephemeral storage uses emptyDir
volumes to store data.
An emptyDir
volume is created when a pod is assigned to a node.
You can set the total amount of storage for the emptyDir
using the sizeLimit
property .
Important
|
Ephemeral storage is not suitable for single-node ZooKeeper clusters or Kafka topics with a replication factor of 1. |
To use ephemeral storage, you set the storage type configuration in the Kafka
or ZooKeeper
resource to ephemeral
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
storage:
type: ephemeral
# ...
zookeeper:
# ...
storage:
type: ephemeral
# ...
The ephemeral volume is used by Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data/kafka-logIDX
Where IDX
is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0
.
Persistent data storage retains data in the event of system disruption. For pods that use persistent data storage, data is persisted across pod failures and restarts.
A dynamic provisioning framework enables clusters to be created with persistent storage. Pod configuration uses Persistent Volume Claims (PVCs) to make storage requests on persistent volumes (PVs). PVs are storage resources that represent a storage volume. PVs are independent of the pods that use them. The PVC requests the amount of storage required when a pod is being created. The underlying storage infrastructure of the PV does not need to be understood. If a PV matches the storage criteria, the PVC is bound to the PV.
Because of its permanent nature, persistent storage is recommended for production.
PVCs can request different types of persistent storage by specifying a StorageClass. Storage classes define storage profiles and dynamically provision PVs. If a storage class is not specified, the default storage class is used. Persistent storage options might include SAN storage types or local persistent volumes.
To use persistent storage, you set the storage type configuration in the Kafka
or ZooKeeper
resource to persistent-claim
.
In the production environment, the following configuration is recommended:
For Kafka, configure type: jbod
with one or more type: persistent-claim
volumes
For ZooKeeper, configure type: persistent-claim
Persistent storage also has the following configuration options:
id
(optional)A storage identification number. This option is mandatory for storage volumes defined in a JBOD storage declaration.
Default is 0
.
size
(required)The size of the persistent volume claim, for example, "1000Gi".
class
(optional)The Kubernetes StorageClass to use for dynamic volume provisioning.
Storage class
configuration includes parameters that describe the profile of a volume in detail.
selector
(optional)Configuration to specify a specific PV. Provides key:value pairs representing the labels of the volume selected.
deleteClaim
(optional)Boolean value to specify whether the PVC is deleted when the cluster is uninstalled.
Default is false
.
Warning
|
Increasing the size of persistent volumes in an existing Strimzi cluster is only supported in Kubernetes versions that support persistent volume resizing. The persistent volume to be resized must use a storage class that supports volume expansion. For other versions of Kubernetes and storage classes that do not support volume expansion, you must decide the necessary storage size before deploying the cluster. Decreasing the size of existing persistent volumes is not possible. |
# ...
spec:
kafka:
# ...
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
- id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
- id: 2
type: persistent-claim
size: 100Gi
deleteClaim: false
# ...
zookeeper:
storage:
type: persistent-claim
size: 1000Gi
# ...
If you do not specify a storage class, the default is used. The following example specifies a storage class.
# ...
storage:
type: persistent-claim
size: 1Gi
class: my-storage-class
# ...
Use a selector
to specify a labeled persistent volume that provides certain features, such as an SSD.
# ...
storage:
type: persistent-claim
size: 1Gi
selector:
hdd-type: ssd
deleteClaim: true
# ...
Instead of using the default storage class, you can specify a different storage class for one or more Kafka brokers or ZooKeeper nodes.
This is useful, for example, when storage classes are restricted to different availability zones or data centers.
You can use the overrides
field for this purpose.
In this example, the default storage class is named my-storage-class
:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
# ...
kafka:
replicas: 3
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
class: my-storage-class
overrides:
- broker: 0
class: my-storage-class-zone-1a
- broker: 1
class: my-storage-class-zone-1b
- broker: 2
class: my-storage-class-zone-1c
# ...
# ...
zookeeper:
replicas: 3
storage:
deleteClaim: true
size: 100Gi
type: persistent-claim
class: my-storage-class
overrides:
- broker: 0
class: my-storage-class-zone-1a
- broker: 1
class: my-storage-class-zone-1b
- broker: 2
class: my-storage-class-zone-1c
# ...
As a result of the configured overrides
property, the volumes use the following storage classes:
The persistent volumes of ZooKeeper node 0 use my-storage-class-zone-1a
.
The persistent volumes of ZooKeeper node 1 use my-storage-class-zone-1b
.
The persistent volumes of ZooKeeepr node 2 use my-storage-class-zone-1c
.
The persistent volumes of Kafka broker 0 use my-storage-class-zone-1a
.
The persistent volumes of Kafka broker 1 use my-storage-class-zone-1b
.
The persistent volumes of Kafka broker 2 use my-storage-class-zone-1c
.
The overrides
property is currently used only to override storage class configurations.
Overrides for other storage configuration properties is not currently supported.
Other storage configuration properties are currently not supported.
When persistent storage is used, it creates PVCs with the following names:
data-cluster-name-kafka-idx
PVC for the volume used for storing data for the Kafka broker pod idx
.
data-cluster-name-zookeeper-idx
PVC for the volume used for storing data for the ZooKeeper node pod idx
.
The persistent volume is used by the Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data/kafka-logIDX
Where IDX
is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0
.
You can provision increased storage capacity by increasing the size of the persistent volumes used by an existing Strimzi cluster. Resizing persistent volumes is supported in clusters that use either a single persistent volume or multiple persistent volumes in a JBOD storage configuration.
Note
|
You can increase but not decrease the size of persistent volumes. Decreasing the size of persistent volumes is not currently supported in Kubernetes. |
A Kubernetes cluster with support for volume resizing.
The Cluster Operator is running.
A Kafka cluster using persistent volumes created using a storage class that supports volume expansion.
Edit the Kafka
resource for your cluster.
Change the size
property to increase the size of the persistent volume allocated to a Kafka cluster, a ZooKeeper cluster, or both.
For Kafka clusters, update the size
property under spec.kafka.storage
.
For ZooKeeper clusters, update the size
property under spec.zookeeper.storage
.
2000Gi
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
storage:
type: persistent-claim
size: 2000Gi
class: my-storage-class
# ...
zookeeper:
# ...
Create or update the resource:
kubectl apply -f <kafka_configuration_file>
Kubernetes increases the capacity of the selected persistent volumes in response to a request from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods that use the resized persistent volumes. This happens automatically.
Verify that the storage capacity has increased for the relevant pods on the cluster:
kubectl get pv
NAME CAPACITY CLAIM
pvc-0ca459ce-... 2000Gi my-project/data-my-cluster-kafka-2
pvc-6e1810be-... 2000Gi my-project/data-my-cluster-kafka-0
pvc-82dc78c9-... 2000Gi my-project/data-my-cluster-kafka-1
The output shows the names of each PVC associated with a broker pod.
For more information about resizing persistent volumes in Kubernetes, see Resizing Persistent Volumes using Kubernetes.
You can configure Strimzi to use JBOD, a data storage configuration of multiple disks or volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also improve performance.
Note
|
JBOD storage is supported for Kafka only not ZooKeeper. |
A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral and persistent storage. For example, you cannot decrease the size of a persistent storage volume after it has been provisioned, or you cannot change the value of sizeLimit
when the type is ephemeral
.
To use JBOD storage, you set the storage type configuration in the Kafka
resource to jbod
.
The volumes
property allows you to describe the disks that make up your JBOD storage array or configuration.
# ...
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
- id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
# ...
The IDs cannot be changed once the JBOD volumes are created. You can add or remove volumes from the JBOD configuration.
When persistent storage is used to declare JBOD volumes, it creates a PVC with the following name:
data-id-cluster-name-kafka-idx
PVC for the volume used for storing data for the Kafka broker pod idx
.
The id
is the ID of the volume used for storing data for Kafka broker pod.
The JBOD volumes are used by Kafka brokers as log directories mounted into the following path:
/var/lib/kafka/data-id/kafka-logidx
Where id
is the ID of the volume used for storing data for Kafka broker pod idx
. For example /var/lib/kafka/data-0/kafka-log0
.
This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It cannot be applied to Kafka clusters configured to use any other storage type.
Note
|
When adding a new volume under an id which was already used in the past and removed, you have to make sure that the previously used PersistentVolumeClaims have been deleted.
|
A Kubernetes cluster
A running Cluster Operator
A Kafka cluster with JBOD storage
Edit the spec.kafka.storage.volumes
property in the Kafka
resource.
Add the new volumes to the volumes
array.
For example, add the new volume with id 2
:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
- id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
- id: 2
type: persistent-claim
size: 100Gi
deleteClaim: false
# ...
zookeeper:
# ...
Create or update the resource:
kubectl apply -f <kafka_configuration_file>
Create new topics or reassign existing partitions to the new disks.
Tip
|
Cruise Control is an effective tool for reassigning partitions.
To perform an intra-broker disk balance, you set rebalanceDisk to true under the KafkaRebalance.spec .
|
This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always has to contain at least one volume.
Important
|
To avoid data loss, you have to move all partitions before removing the volumes. |
A Kubernetes cluster
A running Cluster Operator
A Kafka cluster with JBOD storage with two or more volumes
Reassign all partitions from the disks which are you going to remove. Any data in partitions still assigned to the disks which are going to be removed might be lost.
Tip
|
You can use the kafka-reassign-partitions.sh tool to reassign the partitions.
|
Edit the spec.kafka.storage.volumes
property in the Kafka
resource.
Remove one or more volumes from the volumes
array.
For example, remove the volumes with ids 1
and 2
:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
# ...
zookeeper:
# ...
Create or update the resource:
kubectl apply -f <kafka_configuration_file>
JmxTrans is a tool for retrieving JMX metrics data from Java processes and pushing that data, in various formats, to remote sinks inside or outside the cluster. JmxTrans can communicate with a secure JMX port.
Important
|
Support for JmxTrans in Strimzi is deprecated. It is currently planned to be removed in Strimzi 0.35.0. |
JmxTrans reads JMX metrics data from secure or insecure Kafka brokers and pushes the data to remote sinks in various data formats. For example, JmxTrans can obtain JMX metrics about the request rate of each Kafka broker’s network and then push the data to a Logstash database outside the Kubernetes cluster.
For more information about JmxTrans, see the JmxTrans GitHub.
A running Kubernetes cluster
You can configure a JmxTrans deployment by using the Kafka.spec.jmxTrans
property.
A JmxTrans deployment can read from a secure or insecure Kafka broker.
To configure a JmxTrans deployment, define the following properties:
Kafka.spec.jmxTrans.outputDefinitions
Kafka.spec.jmxTrans.kafkaQueries
For more information on these properties, see the JmxTransSpec
schema reference.
Note
|
To use JMXTrans, jmxOptions must be configured on the Kafka broker.
|
Output definitions specify where JMX metrics are pushed to, and in which data format.
For information about supported data formats, see Data formats.
How many seconds JmxTrans agent waits for before pushing new data can be configured through the flushDelay
property.
The host
and port
properties define the target host address and target port the data is pushed to.
The name
property is a required property that is referenced by the Kafka.spec.jmxTrans.kafkaQueries
property.
Here is an example configuration pushing JMX data in the Graphite format every 5 seconds to a Logstash database on http://myLogstash:9999, and another pushing to standardOut
(standard output):
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
jmxTrans:
outputDefinitions:
- outputType: "com.googlecode.jmxtrans.model.output.GraphiteWriter"
host: "http://myLogstash"
port: 9999
flushDelay: 5
name: "logstash"
- outputType: "com.googlecode.jmxtrans.model.output.StdOutWriter"
name: "standardOut"
# ...
# ...
zookeeper:
# ...
JmxTrans queries specify what JMX metrics are read from the Kafka brokers.
Currently JmxTrans queries can only be sent to the Kafka Brokers.
Configure the targetMBean
property to specify which target MBean on the Kafka broker is addressed.
Configuring the attributes
property specifies which MBean attribute is read as JMX metrics from the target MBean.
JmxTrans supports wildcards to read from target MBeans, and filter by specifying the typenames
.
The outputs
property defines where the metrics are pushed to by specifying the name of the output definitions.
The following JmxTrans deployment reads from all MBeans that match the pattern kafka.server:type=BrokerTopicMetrics,name=*
and have name
in the target MBean’s name.
From those Mbeans, it obtains JMX metrics about the Count
attribute and pushes the metrics to standard output as defined by outputs
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
jmxTrans:
kafkaQueries:
- targetMBean: "kafka.server:type=BrokerTopicMetrics,*"
typeNames: ["name"]
attributes: ["Count"]
outputs: ["standardOut"]
zookeeper:
# ...
Most Kafka CLI tools can connect directly to Kafka, so under normal circumstances you should not need to connect to ZooKeeper. ZooKeeper services are secured with encryption and authentication and are not intended to be used by external applications that are not part of Strimzi.
However, if you want to use Kafka CLI tools that require a connection to ZooKeeper, you can use a terminal inside a ZooKeeper container and connect to localhost:12181
as the ZooKeeper address.
A Kubernetes cluster is available.
A Kafka cluster is running.
The Cluster Operator is running.
Open the terminal using the Kubernetes console or run the exec
command from your CLI.
For example:
kubectl exec -ti my-cluster-zookeeper-0 -- bin/kafka-topics.sh --list --zookeeper localhost:12181
Be sure to use localhost:12181
.
You can now run Kafka commands to ZooKeeper.
This procedure describes how to delete an existing Kafka node by using a Kubernetes annotation.
Deleting a Kafka node consists of deleting both the Pod
on which the Kafka broker is running and the related PersistentVolumeClaim
(if the cluster was deployed with persistent storage).
After deletion, the Pod
and its related PersistentVolumeClaim
are recreated automatically.
Warning
|
Deleting a PersistentVolumeClaim can cause permanent data loss. The following procedure should only be performed if you have encountered storage issues.
|
See the Deploying and Upgrading Strimzi guide for instructions on running a:
Find the name of the Pod
that you want to delete.
Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and ends at the total number of replicas minus one.
For example, my-cluster-kafka-0
.
Annotate the Pod
resource in Kubernetes.
Use kubectl annotate
:
kubectl annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true
Wait for the next reconciliation, when the annotated pod with the underlying persistent volume claim will be deleted and then recreated.
This procedure describes how to delete an existing ZooKeeper node by using a Kubernetes annotation.
Deleting a ZooKeeper node consists of deleting both the Pod
on which ZooKeeper is running and the related PersistentVolumeClaim
(if the cluster was deployed with persistent storage).
After deletion, the Pod
and its related PersistentVolumeClaim
are recreated automatically.
Warning
|
Deleting a PersistentVolumeClaim can cause permanent data loss. The following procedure should only be performed if you have encountered storage issues.
|
See the Deploying and Upgrading Strimzi guide for instructions on running a:
Find the name of the Pod
that you want to delete.
ZooKeeper pods are named <cluster-name>-zookeeper-<index>, where <index> starts at zero and ends at the total number of replicas minus one.
For example, my-cluster-zookeeper-0
.
Annotate the Pod
resource in Kubernetes.
Use kubectl annotate
:
kubectl annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true
Wait for the next reconciliation, when the annotated pod with the underlying persistent volume claim will be deleted and then recreated.
The following resources are created by the Cluster Operator in the Kubernetes cluster:
cluster-name-cluster-ca
Secret with the Cluster CA private key used to encrypt the cluster communication.
cluster-name-cluster-ca-cert
Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka brokers.
cluster-name-clients-ca
Secret with the Clients CA private key used to sign user certificates
cluster-name-clients-ca-cert
Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.
cluster-name-cluster-operator-certs
Secret with Cluster operators keys for communication with Kafka and ZooKeeper.
cluster-name-zookeeper
Name given to the following ZooKeeper resources:
StrimziPodSet or StatefulSet (if the UseStrimziPodSets
feature gate is disabled) for managing the ZooKeeper node pods.
Service account used by the ZooKeeper nodes.
PodDisruptionBudget configured for the ZooKeeper nodes.
cluster-name-zookeeper-idx
Pods created by the ZooKeeper StatefulSet or StrimziPodSet.
cluster-name-zookeeper-nodes
Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.
cluster-name-zookeeper-client
Service used by Kafka brokers to connect to ZooKeeper nodes as clients.
cluster-name-zookeeper-config
ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the ZooKeeper node pods.
cluster-name-zookeeper-nodes
Secret with ZooKeeper node keys.
cluster-name-network-policy-zookeeper
Network policy managing access to the ZooKeeper services.
data-cluster-name-zookeeper-idx
Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx
. This resource will be created only if persistent storage is selected for provisioning persistent volumes to store data.
cluster-name-kafka
Name given to the following Kafka resources:
StrimziPodSet or StatefulSet (if the UseStrimziPodSets
feature gate is disabled) for managing the Kafka broker pods.
Service account used by the Kafka pods.
PodDisruptionBudget configured for the Kafka brokers.
cluster-name-kafka-idx
Name given to the following Kafka resources:
Pods created by the Kafka StatefulSet or StrimziPodSet.
ConfigMap with Kafka broker configuration (if the UseStrimziPodSets
feature gate is enabled).
cluster-name-kafka-brokers
Service needed to have DNS resolve the Kafka broker pods IP addresses directly.
cluster-name-kafka-bootstrap
Service can be used as bootstrap servers for Kafka clients connecting from within the Kubernetes cluster.
cluster-name-kafka-external-bootstrap
Bootstrap service for clients connecting from outside the Kubernetes cluster. This resource is created only when an external listener is enabled. The old service name will be used for backwards compatibility when the listener name is external
and port is 9094
.
cluster-name-kafka-pod-id
Service used to route traffic from outside the Kubernetes cluster to individual pods. This resource is created only when an external listener is enabled. The old service name will be used for backwards compatibility when the listener name is external
and port is 9094
.
cluster-name-kafka-external-bootstrap
Bootstrap route for clients connecting from outside the Kubernetes cluster. This resource is created only when an external listener is enabled and set to type route
. The old route name will be used for backwards compatibility when the listener name is external
and port is 9094
.
cluster-name-kafka-pod-id
Route for traffic from outside the Kubernetes cluster to individual pods. This resource is created only when an external listener is enabled and set to type route
. The old route name will be used for backwards compatibility when the listener name is external
and port is 9094
.
cluster-name-kafka-listener-name-bootstrap
Bootstrap service for clients connecting from outside the Kubernetes cluster. This resource is created only when an external listener is enabled. The new service name will be used for all other external listeners.
cluster-name-kafka-listener-name-pod-id
Service used to route traffic from outside the Kubernetes cluster to individual pods. This resource is created only when an external listener is enabled. The new service name will be used for all other external listeners.
cluster-name-kafka-listener-name-bootstrap
Bootstrap route for clients connecting from outside the Kubernetes cluster. This resource is created only when an external listener is enabled and set to type route
. The new route name will be used for all other external listeners.
cluster-name-kafka-listener-name-pod-id
Route for traffic from outside the Kubernetes cluster to individual pods. This resource is created only when an external listener is enabled and set to type route
. The new route name will be used for all other external listeners.
cluster-name-kafka-config
ConfigMap containing the Kafka ancillary configuration, which is mounted as a volume by the broker pods when the UseStrimziPodSets
feature gate is disabled.
cluster-name-kafka-brokers
Secret with Kafka broker keys.
cluster-name-network-policy-kafka
Network policy managing access to the Kafka services.
strimzi-namespace-name-cluster-name-kafka-init
Cluster role binding used by the Kafka brokers.
cluster-name-jmx
Secret with JMX username and password used to secure the Kafka broker port. This resource is created only when JMX is enabled in Kafka.
data-cluster-name-kafka-idx
Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx
. This resource is created only if persistent storage is selected for provisioning persistent volumes to store data.
data-id-cluster-name-kafka-idx
Persistent Volume Claim for the volume id
used for storing data for the Kafka broker pod idx
. This resource is created only if persistent storage is selected for JBOD volumes when provisioning persistent volumes to store data.
These resources are only created if the Entity Operator is deployed using the Cluster Operator.
cluster-name-entity-operator
Name given to the following Entity Operator resources:
Deployment with Topic and User Operators.
Service account used by the Entity Operator.
cluster-name-entity-operator-random-string
Pod created by the Entity Operator deployment.
cluster-name-entity-topic-operator-config
ConfigMap with ancillary configuration for Topic Operators.
cluster-name-entity-user-operator-config
ConfigMap with ancillary configuration for User Operators.
cluster-name-entity-topic-operator-certs
Secret with Topic Operator keys for communication with Kafka and ZooKeeper.
cluster-name-entity-user-operator-certs
Secret with User Operator keys for communication with Kafka and ZooKeeper.
strimzi-cluster-name-entity-topic-operator
Role binding used by the Entity Topic Operator.
strimzi-cluster-name-entity-user-operator
Role binding used by the Entity User Operator.
These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.
cluster-name-kafka-exporter
Name given to the following Kafka Exporter resources:
Deployment with Kafka Exporter.
Service used to collect consumer lag metrics.
Service account used by the Kafka Exporter.
cluster-name-kafka-exporter-random-string
Pod created by the Kafka Exporter deployment.
These resources are only created if Cruise Control was deployed using the Cluster Operator.
cluster-name-cruise-control
Name given to the following Cruise Control resources:
Deployment with Cruise Control.
Service used to communicate with Cruise Control.
Service account used by the Cruise Control.
cluster-name-cruise-control-random-string
Pod created by the Cruise Control deployment.
cluster-name-cruise-control-config
ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by the Cruise Control pods.
cluster-name-cruise-control-certs
Secret with Cruise Control keys for communication with Kafka and ZooKeeper.
cluster-name-network-policy-cruise-control
Network policy managing access to the Cruise Control service.
These resources are only created if JMXTrans is deployed using the Cluster Operator.
cluster-name-jmxtrans
Name given to the following JMXTrans resources:
Deployment with JMXTrans.
Service account used by the JMXTrans.
cluster-name-jmxtrans-random-string
Pod created by the JMXTrans deployment.
cluster-name-jmxtrans-config
ConfigMap that contains the JMXTrans ancillary configuration, and is mounted as a volume by the JMXTrans pods.
Configure a Kafka Connect deployment using the KafkaConnect
resource.
Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems using connector plugins.
Kafka Connect provides a framework for integrating Kafka with an external data source or target, such as a database, for import or export of data using connectors.
Connectors are plugins that provide the connection configuration needed.
KafkaConnect
schema reference describes the full schema of the KafkaConnect
resource.
For more information on deploying connector plugins, see Extending Kafka Connect with connector plugins.
Use Kafka Connect to set up external data connections to your Kafka cluster.
Use the properties of the KafkaConnect
resource to configure your Kafka Connect deployment.
KafkaConnector
resources allow you to create and manage connector instances for Kafka Connect in a Kubernetes-native way.
In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding the strimzi.io/use-connector-resources
annotation.
You can also add a build
configuration so that Strimzi automatically builds a container image with the connector plugins you require for your data connections.
External configuration for Kafka Connect connectors is specified through the externalConfiguration
property.
To manage connectors, you can use use KafkaConnector
custom resources or the Kafka Connect REST API.
KafkaConnector
resources must be deployed to the same namespace as the Kafka Connect cluster they link to.
For more information on using these methods to create, reconfigure, or delete connectors, see Adding connectors.
Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka itself. ConfigMaps and Secrets are standard Kubernetes resources used for storing configurations and confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector. You can then reference the configuration values in HTTP REST commands, which keeps the configuration separate and more secure, if needed. This method applies especially to confidential data, such as usernames, passwords, or certificates.
You can tune the configuration to handle high volumes of messages. For more information, see Handling high volumes of messages.
A Kubernetes cluster
A running Cluster Operator
See the Deploying and Upgrading Strimzi guide for instructions on running a:
Edit the spec
properties of the KafkaConnect
resource.
The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect (1)
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true" (2)
spec:
replicas: 3 (3)
authentication: (4)
type: tls
certificateAndKey:
certificate: source.crt
key: source.key
secretName: my-user-source
bootstrapServers: my-cluster-kafka-bootstrap:9092 (5)
tls: (6)
trustedCertificates:
- secretName: my-cluster-cluster-cert
certificate: ca.crt
- secretName: my-cluster-cluster-cert
certificate: ca2.crt
config: (7)
group.id: my-connect-cluster
offset.storage.topic: my-connect-cluster-offsets
config.storage.topic: my-connect-cluster-configs
status.storage.topic: my-connect-cluster-status
key.converter: org.apache.kafka.connect.json.JsonConverter
value.converter: org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable: true
value.converter.schemas.enable: true
config.storage.replication.factor: 3
offset.storage.replication.factor: 3
status.storage.replication.factor: 3
build: (8)
output: (9)
type: docker
image: my-registry.io/my-org/my-connect-cluster:latest
pushSecret: my-registry-credentials
plugins: (10)
- name: debezium-postgres-connector
artifacts:
- type: tgz
url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-postgres/2.1.1.Final/debezium-connector-postgres-2.1.1.Final-plugin.tar.gz
sha512sum: 962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb548045e115e33a9e69b1b2a352bee24df035a0447cb820077af00c03
- name: camel-telegram
artifacts:
- type: tgz
url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-telegram-kafka-connector/0.9.0/camel-telegram-kafka-connector-0.9.0-package.tar.gz
sha512sum: a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e8020bf4187870699819f54ef5859c7846ee4081507f48873479
externalConfiguration: (11)
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey
resources: (12)
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: (13)
type: inline
loggers:
log4j.rootLogger: "INFO"
readinessProbe: (14)
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
metricsConfig: (15)
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
jvmOptions: (16)
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest (17)
rack:
topologyKey: topology.kubernetes.io/zone (18)
template: (19)
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
connectContainer: (20)
env:
- name: JAEGER_SERVICE_NAME
value: my-jaeger-service
- name: JAEGER_AGENT_HOST
value: jaeger-agent-name
- name: JAEGER_AGENT_PORT
value: "6831"
Use KafkaConnect
.
Enables KafkaConnectors for the Kafka Connect cluster.
The number of replica nodes for the workers that run tasks.
Authentication for the Kafka Connect cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, Kafka Connect connects to Kafka brokers using a plain text connection.
Bootstrap server for connection to the Kafka Connect cluster.
TLS encryption with key names under which TLS certificates are stored in X.509 format for the cluster. If certificates are stored in the same secret, it can be listed multiple times.
Kafka Connect configuration of workers (not connectors). Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.
Build configuration properties for building a container image with connector plugins automatically.
(Required) Configuration of the container registry where new images are pushed.
(Required) List of connector plugins and their artifacts to add to the new container image. Each plugin must be configured with at least one artifact
.
External configuration for Kafka connectors using environment variables, as shown here, or volumes. You can also use configuration provider plugins to load configuration values from external sources.
Requests for reservation of supported resources, currently cpu
and memory
, and limits to specify the maximum resources that can be consumed.
Specified Kafka Connect loggers and log levels added directly (inline
) or indirectly (external
) through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
or log4j2.properties
key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.
Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter in this example. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key
.
JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka Connect.
ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized option intended for a deployment within the same location, not across regions. Use this option if you want connectors to consume from the closest replica rather than the leader replica. In certain cases, consuming from the closest replica can improve network utilization or reduce costs . The topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standard topology.kubernetes.io/zone
label. To consume from the closest replica, enable the RackAwareReplicaSelector
in the Kafka broker configuration.
Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
Environment variables are set for distributed tracing.
Create or update the resource:
kubectl apply -f KAFKA-CONNECT-CONFIG-FILE
If authorization is enabled for Kafka Connect, configure Kafka Connect users to enable access to the Kafka Connect consumer group and topics.
If you are running multiple instances of Kafka Connect, you have to change the default configuration of the following config
properties:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
config:
group.id: connect-cluster (1)
offset.storage.topic: connect-cluster-offsets (2)
config.storage.topic: connect-cluster-configs (3)
status.storage.topic: connect-cluster-status (4)
# ...
# ...
The Kafka Connect cluster ID within Kafka.
Kafka topic that stores connector offsets.
Kafka topic that stores connector and task status configurations.
Kafka topic that stores connector and task status updates.
Note
|
Values for the three topics must be the same for all Kafka Connect instances with the same group.id .
|
Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a cluster and use the same topics.
If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected and generate errors.
If you wish to run multiple Kafka Connect instances, change the values of these properties for each instance.
This procedure describes how to authorize user access to Kafka Connect.
When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access rights to the consumer group and the internal topics of Kafka Connect.
The properties for the consumer group and internal topics are automatically configured by Strimzi,
or they can be specified explicitly in the spec
of the KafkaConnect
resource.
KafkaConnect
resourceapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
config:
group.id: my-connect-cluster (1)
offset.storage.topic: my-connect-cluster-offsets (2)
config.storage.topic: my-connect-cluster-configs (3)
status.storage.topic: my-connect-cluster-status (4)
# ...
# ...
The Kafka Connect cluster ID within Kafka.
Kafka topic that stores connector offsets.
Kafka topic that stores connector and task status configurations.
Kafka topic that stores connector and task status updates.
This procedure shows how access is provided when simple
authorization is being used.
Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer
plugin, to provide the right level of access.
For more information on configuring a KafkaUser
resource to use simple authorization, see the AclRule
schema reference.
Note
|
The default values for the consumer group and topics will differ when running multiple instances. |
A Kubernetes cluster
A running Cluster Operator
Edit the authorization
property in the KafkaUser
resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and consumer group using literal
name values:
Property | Name |
---|---|
|
|
|
|
|
|
|
|
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
# ...
authorization:
type: simple
acls:
# access to offset.storage.topic
- resource:
type: topic
name: connect-cluster-offsets
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"
# access to status.storage.topic
- resource:
type: topic
name: connect-cluster-status
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"
# access to config.storage.topic
- resource:
type: topic
name: connect-cluster-configs
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"
# consumer group
- resource:
type: group
name: connect-cluster
patternType: literal
operations:
- Read
host: "*"
Create or update the resource.
kubectl apply -f KAFKA-USER-CONFIG-FILE
The following resources are created by the Cluster Operator in the Kubernetes cluster:
Name given to the following Kafka Connect resources:
Deployment that creates the Kafka Connect worker node pods (when StableConnectIdentities
feature gate is disabled).
StrimziPodSet that creates the Kafka Connect worker node pods (when StableConnectIdentities
feature gate is enabled).
Headless service that provides stable DNS names to the Connect pods (when StableConnectIdentities
feature gate is enabled).
Pod Disruption Budget configured for the Kafka Connect worker nodes.
Pods created by the Kafka Connect StrimziPodSet (when StableConnectIdentities
feature gate is enabled).
Service which exposes the REST interface for managing the Kafka Connect cluster.
ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by the Kafka broker pods.
Configure a Kafka MirrorMaker 2.0 deployment using the KafkaMirrorMaker2
resource.
MirrorMaker 2.0 replicates data between two or more Kafka clusters, within or across data centers.
KafkaMirrorMaker2
schema reference describes the full schema of the KafkaMirrorMaker2
resource.
MirrorMaker 2.0 resource configuration differs from the previous version of MirrorMaker. If you choose to use MirrorMaker 2.0, there is currently no legacy support, so any resources must be manually converted into the new format.
Data replication across clusters supports scenarios that require:
Recovery of data in the event of a system failure
Aggregation of data for analysis
Restriction of data access to a specific cluster
Provision of data at a specific location to improve latency
MirrorMaker 2.0 consumes messages from a source Kafka cluster and writes them to a target Kafka cluster.
MirrorMaker 2.0 uses:
Source cluster configuration to consume data from the source cluster
Target cluster configuration to output data to the target cluster
MirrorMaker 2.0 is based on the Kafka Connect framework, connectors managing the transfer of data between clusters.
You configure MirrorMaker 2.0 to define the Kafka Connect deployment, including the connection details of the source and target clusters, and then run a set of MirrorMaker 2.0 connectors to make the connection.
MirrorMaker 2.0 consists of the following connectors:
MirrorSourceConnector
The source connector replicates topics from a source cluster to a target cluster. It also replicates ACLs and is necessary for the MirrorCheckpointConnector
to run.
MirrorCheckpointConnector
The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group offsets between the source and target cluster.
MirrorHeartbeatConnector
The heartbeat connector periodically checks connectivity between the source and target cluster.
Note
|
If you are using the User Operator to manage ACLs, ACL replication through the connector is not possible. |
The process of mirroring data from a source cluster to a target cluster is asynchronous. Each MirrorMaker 2.0 instance mirrors data from one source cluster to one target cluster. You can use more than one MirrorMaker 2.0 instance to mirror data between any number of clusters.
By default, a check for new topics in the source cluster is made every 10 minutes.
You can change the frequency by adding refresh.topics.interval.seconds
to the source connector configuration.
You can use MirrorMaker 2.0 in active/passive or active/active cluster configurations.
An active/active configuration has two active clusters replicating data bidirectionally. Applications can use either cluster. Each cluster can provide the same data. In this way, you can make the same data available in different geographical locations. As consumer groups are active in both clusters, consumer offsets for replicated topics are not synchronized back to the source cluster.
An active/passive configuration has an active cluster replicating data to a passive cluster. The passive cluster remains on standby. You might use the passive cluster for data recovery in the event of system failure.
The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2.0 cluster is required at each target destination.
The MirrorMaker 2.0 architecture supports bidirectional replication in an active/active cluster configuration.
Each cluster replicates the data of the other cluster using the concept of source and remote topics. As the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2.0 to represent the source cluster. The name of the originating cluster is prepended to the name of the topic.
By flagging the originating cluster, topics are not replicated back to that cluster.
The concept of replication through remote topics is useful when configuring an architecture that requires data aggregation. Consumers can subscribe to source and remote topics within the same cluster, without the need for a separate aggregation cluster.
The MirrorMaker 2.0 architecture supports unidirectional replication in an active/passive cluster configuration.
You can use an active/passive cluster configuration to make backups or migrate data to another cluster. In this situation, you might not want automatic renaming of remote topics.
You can override automatic renaming by adding IdentityReplicationPolicy
to the source connector configuration.
With this configuration applied, topics retain their original names.
MirrorMaker 2.0 supports topic configuration synchronization between source and target clusters. You specify source topics in the MirrorMaker 2.0 configuration. MirrorMaker 2.0 monitors the source topics. MirrorMaker 2.0 detects and propagates changes to the source topics to the remote topics. Changes might include automatically creating missing topics and partitions.
Note
|
In most cases you write to local topics and read from remote topics. Though write operations are not prevented on remote topics, they should be avoided. |
MirrorMaker 2.0 tracks offsets for consumer groups using internal topics.
offset-syncs
topicThe offset-syncs
topic maps the source and target offsets for replicated topic partitions from record metadata.
checkpoints
topicThe checkpoints
topic maps the last committed offset in the source and target cluster for replicated topic partitions in each consumer group.
As they used internally by MirrorMaker 2.0, you do not interact directly with these topics.
MirrorCheckpointConnector
emits checkpoints for offset tracking.
Offsets for the checkpoints
topic are tracked at predetermined intervals through configuration.
Both topics enable replication to be fully restored from the correct offset position on failover.
The location of the offset-syncs
topic is the source
cluster by default.
You can use the offset-syncs.topic.location
connector configuration to change this to the target
cluster.
You need read/write access to the cluster that contains the topic.
Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2.0 even if you have only read access to the source cluster.
The __consumer_offsets
topic stores information on committed offsets for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source cluster into the consumer offsets topic of a target cluster.
Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes down, consumer applications can switch to the passive (standby) cluster and pick up from the last transferred offset position.
To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true
.
Synchronization is disabled by default.
When using the IdentityReplicationPolicy
in the source connector, it also has to be configured in the checkpoint connector configuration.
This ensures that the mirrored consumer offsets will be applied for the correct topics.
Consumer offsets are only synchronized for consumer groups that are not active in the target cluster.
If the consumer groups are in the target cluster, the synchronization cannot be performed and an UNKNOWN_MEMBER_ID
error is returned.
If enabled, the synchronization of offsets from the source cluster is made periodically.
You can change the frequency by adding sync.group.offsets.interval.seconds
and emit.checkpoints.interval.seconds
to the checkpoint connector configuration.
The properties specify the frequency in seconds that the consumer group offsets are synchronized, and the frequency of checkpoints emitted for offset tracking.
The default for both properties is 60 seconds.
You can also change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.
Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely result in some duplication of messages.
Note
|
If you have an application written in Java, you can use the RemoteClusterUtils.java utility to synchronize offsets through the application. The utility fetches remote offsets for a consumer group from the checkpoints topic.
|
MirrorHeartbeatConnector
emits heartbeats to check connectivity between clusters.
An internal heartbeat
topic is replicated from the source cluster.
Target clusters use the heartbeat
topic to check the following:
The connector managing connectivity between clusters is running
The source cluster is available
Use Mirrormaker 2.0 connector configuration for the internal connectors that orchestrate the synchronization of data between Kafka clusters.
The following table describes connector properties and the connectors you configure to use them.
Property | sourceConnector | checkpointConnector | heartbeatConnector |
---|---|---|---|
|
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
|
✓ |
✓ |
|
|
✓ |
✓ |
|
|
✓ |
✓ |
|
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
||
|
✓ |
MirrorMaker 2.0 connectors use internal producers and consumers. If needed, you can configure these producers and consumers to override the default settings.
For example, you can increase the batch.size
for the source producer that sends topics to the target Kafka cluster to better accommodate large volumes of messages.
Important
|
Producer and consumer configuration options depend on the MirrorMaker 2.0 implementation, and may be subject to change. |
The following tables describe the producers and consumers for each of the connectors and where you can add configuration.
Type | Description | Configuration |
---|---|---|
Producer |
Sends topic messages to the target Kafka cluster. Consider tuning the configuration of this producer when it is handling large volumes of data. |
|
Producer |
Writes to the |
|
Consumer |
Retrieves topic messages from the source Kafka cluster. |
|
Type | Description | Configuration |
---|---|---|
Producer |
Emits consumer offset checkpoints. |
|
Consumer |
Loads the |
|
Note
|
You can set offset-syncs.topic.location to target to use the target Kafka cluster as the location of the offset-syncs topic.
|
Type | Description | Configuration |
---|---|---|
Producer |
Emits heartbeats. |
|
The following example shows how you configure the producers and consumers.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
version: 3.4.0
# ...
mirrors:
- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target"
sourceConnector:
tasksMax: 5
config:
producer.override.batch.size: 327680
producer.override.linger.ms: 100
producer.request.timeout.ms: 30000
consumer.fetch.max.bytes: 52428800
# ...
checkpointConnector:
config:
producer.override.request.timeout.ms: 30000
consumer.max.poll.interval.ms: 300000
# ...
heartbeatConnector:
config:
producer.override.request.timeout.ms: 30000
# ...
Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector comprises one or more tasks that are distributed across a group of worker pods that run the tasks. Increasing the number of tasks can help with performance issues when replicating a large number of partitions or synchronizing the offsets of a large number of consumer groups.
Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod, so you don’t need more worker pods than tasks. If there are more tasks than workers, workers handle multiple tasks.
You can specify the maximum number of connector tasks in your MirrorMaker configuration using the tasksMax
property.
Without specifying a maximum number of tasks, the default setting is a single task.
The heartbeat connector always uses a single task.
The number of tasks that are started for the source and checkpoint connectors is the lower value between the maximum number of possible tasks and the value for tasksMax
.
For the source connector, the maximum number of tasks possible is one for each partition being replicated from the source cluster.
For the checkpoint connector, the maximum number of tasks possible is one for each consumer group being replicated from the source cluster.
When setting a maximum number of tasks, consider the number of partitions and the hardware resources that support the process.
If the infrastructure supports the processing overhead, increasing the number of tasks can improve throughput and latency. For example, adding more tasks reduces the time taken to poll the source cluster when there is a high number of partitions or consumer groups.
Increasing the number of tasks for the checkpoint connector is useful when you have a large number of partitions.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
# ...
mirrors:
- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target"
sourceConnector:
tasksMax: 10
# ...
Increasing the number of tasks for the checkpoint connector is useful when you have a large number of consumer groups.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
# ...
mirrors:
- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target"
checkpointConnector:
tasksMax: 10
# ...
By default, MirrorMaker 2.0 checks for new consumer groups every 10 minutes.
You can adjust the refresh.groups.interval.seconds
configuration to change the frequency.
Take care when adjusting lower.
More frequent checks can have a negative impact on performance.
If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2.0 performance. The example MirrorMaker 2.0 Grafana dashboard provided with Strimzi shows the following metrics related to tasks and latency.
The number of tasks
Replication latency
Offset synchronization latency
ACL access to remote topics is possible if you are not using the User Operator.
If AclAuthorizer
is being used, without the User Operator, ACL rules that manage access to brokers also apply to remote topics.
Users that can read a source topic can read its remote equivalent.
Note
|
OAuth 2.0 authorization does not support access to remote topics in this way. |
Use the properties of the KafkaMirrorMaker2
resource to configure your Kafka MirrorMaker 2.0 deployment.
Use MirrorMaker 2.0 to synchronize data between Kafka clusters.
The configuration must specify:
Each Kafka cluster
Connection information for each cluster, including authentication
The replication flow and direction
Cluster to cluster
Topic to topic
Note
|
The previous version of MirrorMaker continues to be supported. If you wish to use the resources configured for the previous version, they must be updated to the format supported by MirrorMaker 2.0. |
MirrorMaker 2.0 provides default configuration values for properties such as replication factors. A minimal configuration, with defaults left unchanged, would be something like this example:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
version: 3.4.0
connectCluster: "my-cluster-target"
clusters:
- alias: "my-cluster-source"
bootstrapServers: my-cluster-source-kafka-bootstrap:9092
- alias: "my-cluster-target"
bootstrapServers: my-cluster-target-kafka-bootstrap:9092
mirrors:
- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target"
sourceConnector: {}
You can configure access control for source and target clusters using mTLS or SASL authentication. This procedure shows a configuration that uses TLS encryption and mTLS authentication for the source and target cluster.
You can specify the topics and consumer groups you wish to replicate from a source cluster in the KafkaMirrorMaker2
resource.
You use the topicsPattern
and groupsPattern
properties to do this.
You can provide a list of names or use a regular expression.
By default, all topics and consumer groups are replicated if you do not set the topicsPattern
and groupsPattern
properties.
You can also replicate all topics and consumer groups by using ".*"
as a regular expression.
However, try to specify only the topics and consumer groups you need to avoid causing any unnecessary extra load on the cluster.
You can tune the configuration to handle high volumes of messages. For more information, see Handling high volumes of messages.
Strimzi is running
Source and target Kafka clusters are available
Edit the spec
properties for the KafkaMirrorMaker2
resource.
The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
version: 3.4.0 # (1)
replicas: 3 # (2)
connectCluster: "my-cluster-target" # (3)
clusters: # (4)
- alias: "my-cluster-source" # (5)
authentication: # (6)
certificateAndKey:
certificate: source.crt
key: source.key
secretName: my-user-source
type: tls
bootstrapServers: my-cluster-source-kafka-bootstrap:9092 # (7)
tls: # (8)
trustedCertificates:
- certificate: ca.crt
secretName: my-cluster-source-cluster-ca-cert
- alias: "my-cluster-target" # (9)
authentication: # (10)
certificateAndKey:
certificate: target.crt
key: target.key
secretName: my-user-target
type: tls
bootstrapServers: my-cluster-target-kafka-bootstrap:9092 # (11)
config: # (12)
config.storage.replication.factor: 1
offset.storage.replication.factor: 1
status.storage.replication.factor: 1
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" # (13)
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS # (14)
tls: # (15)
trustedCertificates:
- certificate: ca.crt
secretName: my-cluster-target-cluster-ca-cert
mirrors: # (16)
- sourceCluster: "my-cluster-source" # (17)
targetCluster: "my-cluster-target" # (18)
sourceConnector: # (19)
tasksMax: 10 # (20)
autoRestart: # (21)
enabled: true
config:
replication.factor: 1 # (22)
offset-syncs.topic.replication.factor: 1 # (23)
sync.topic.acls.enabled: "false" # (24)
refresh.topics.interval.seconds: 60 # (25)
replication.policy.separator: "." # (26)
replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" # (27)
heartbeatConnector: # (28)
autoRestart:
enabled: true
config:
heartbeats.topic.replication.factor: 1 # (29)
checkpointConnector: # (30)
autoRestart:
enabled: true
config:
checkpoints.topic.replication.factor: 1 # (31)
refresh.groups.interval.seconds: 600 # (32)
sync.group.offsets.enabled: true # (33)
sync.group.offsets.interval.seconds: 60 # (34)
emit.checkpoints.interval.seconds: 60 # (35)
replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy"
topicsPattern: "topic1|topic2|topic3" # (36)
groupsPattern: "group1|group2|group3" # (37)
resources: # (38)
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: # (39)
type: inline
loggers:
connect.root.logger.level: "INFO"
readinessProbe: # (40)
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
jvmOptions: # (41)
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest # (42)
rack:
topologyKey: topology.kubernetes.io/zone # (43)
template: # (44)
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
connectContainer: # (45)
env:
- name: JAEGER_SERVICE_NAME
value: my-jaeger-service
- name: JAEGER_AGENT_HOST
value: jaeger-agent-name
- name: JAEGER_AGENT_PORT
value: "6831"
tracing:
type: jaeger # (46)
externalConfiguration: # (47)
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey
The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.
The number of replica nodes for the workers that run tasks.
Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The Kafka cluster is used by Kafka Connect for its internal topics.
Specification for the Kafka clusters being synchronized.
Cluster alias for the source Kafka cluster.
Authentication for the source cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.
Bootstrap server for connection to the source Kafka cluster.
TLS encryption with key names under which TLS certificates are stored in X.509 format for the source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.
Cluster alias for the target Kafka cluster.
Authentication for the target Kafka cluster is configured in the same way as for the source Kafka cluster.
Bootstrap server for connection to the target Kafka cluster.
Kafka Connect configuration. Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.
SSL properties for external listeners to run with a specific cipher suite for a TLS version.
Hostname verification is enabled by setting to HTTPS
. An empty string disables the verification.
TLS encryption for the target Kafka cluster is configured in the same way as for the source Kafka cluster.
Cluster alias for the source cluster used by the MirrorMaker 2.0 connectors.
Cluster alias for the target cluster used by the MirrorMaker 2.0 connectors.
Configuration for the MirrorSourceConnector
that creates remote topics. The config
overrides the default configuration options.
The maximum number of tasks that the connector may create. Tasks handle the data replication and run in parallel. If the infrastructure supports the processing overhead, increasing this value can improve throughput. Kafka Connect distributes the tasks between members of the cluster. If there are more tasks than workers, workers are assigned multiple tasks. For sink connectors, aim to have one task for each topic partition consumed. For source connectors, the number of tasks that can run in parallel may also depend on the external system. The connector creates fewer than the maximum number of tasks if it cannot achieve the parallelism.
Enables automatic restarts of failed connectors and tasks. Up to seven restart attempts are made, after which restarts must be made manually.
Replication factor for mirrored topics created at the target cluster.
Replication factor for the MirrorSourceConnector
offset-syncs
internal topic that maps the offsets of the source and target clusters.
When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The default is true
. This feature is not compatible with the User Operator. If you are using the User Operator, set this property to false
.
Optional setting to change the frequency of checks for new topics. The default is for a check every 10 minutes.
Defines the separator used for the renaming of remote topics.
Adds a policy that overrides the automatic renaming of remote topics. Instead of prepending the name with the name of the source cluster, the topic retains its original name. This optional setting is useful for active/passive backups and data migration.
To configure topic offset synchronization, this property must also be set for the checkpointConnector.config
.
Configuration for the MirrorHeartbeatConnector
that performs connectivity checks. The config
overrides the default configuration options.
Replication factor for the heartbeat topic created at the target cluster.
Configuration for the MirrorCheckpointConnector
that tracks offsets. The config
overrides the default configuration options.
Replication factor for the checkpoints topic created at the target cluster.
Optional setting to change the frequency of checks for new consumer groups. The default is for a check every 10 minutes.
Optional setting to synchronize consumer group offsets, which is useful for recovery in an active/passive configuration. Synchronization is not enabled by default.
If the synchronization of consumer group offsets is enabled, you can adjust the frequency of the synchronization.
Adjusts the frequency of checks for offset tracking. If you change the frequency of offset synchronization, you might also need to adjust the frequency of these checks.
Topic replication from the source cluster defined as a comma-separated list or regular expression pattern. The source connector replicates the specified topics. The checkpoint connector tracks offsets for the specified topics. Here we request three topics by name.
Consumer group replication from the source cluster defined as a comma-separated list or regular expression pattern. The checkpoint connector replicates the specified consumer groups. Here we request three consumer groups by name.
Requests for reservation of supported resources, currently cpu
and memory
, and limits to specify the maximum resources that can be consumed.
Specified Kafka Connect loggers and log levels added directly (inline
) or indirectly (external
) through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
or log4j2.properties
key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.
Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka MirrorMaker.
ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized option intended for a deployment within the same location, not across regions. Use this option if you want connectors to consume from the closest replica rather than the leader replica. In certain cases, consuming from the closest replica can improve network utilization or reduce costs . The topologyKey
must match a node label containing the rack ID. The example used in this configuration specifies a zone using the standard topology.kubernetes.io/zone
label. To consume from the closest replica, enable the RackAwareReplicaSelector
in the Kafka broker configuration.
Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
Environment variables are set for distributed tracing.
Distributed tracing is enabled for Jaeger.
External configuration for a Kubernetes Secret mounted to Kafka MirrorMaker as an environment variable. You can also use configuration provider plugins to load configuration values from external sources.
Create or update the resource:
kubectl apply -f MIRRORMAKER-CONFIGURATION-FILE
This procedure describes in outline the configuration required to secure a MirrorMaker 2.0 deployment.
You need separate configuration for the source Kafka cluster and the target Kafka cluster. You also need separate user configuration to provide the credentials required for MirrorMaker to connect to the source and target Kafka clusters.
For the Kafka clusters, you specify internal listeners for secure connections within a Kubernetes cluster and external listeners for connections outside the Kubernetes cluster.
You can configure authentication and authorization mechanisms. The security options implemented for the source and target Kafka clusters must be compatible with the security options implemented for MirrorMaker 2.0.
After you have created the cluster and user authentication credentials, you specify them in your MirrorMaker configuration for secure connections.
Note
|
In this procedure, the certificates generated by the Cluster Operator are used, but you can replace them by installing your own certificates. You can also configure your listener to use a Kafka listener certificate managed by an external CA (certificate authority). |
Before starting this procedure, take a look at the example configuration files provided by Strimzi. They include examples for securing a deployment of MirrorMaker 2.0 using mTLS or SCRAM-SHA-512 authentication. The examples specify internal listeners for connecting within a Kubernetes cluster.
The examples provide the configuration for full authorization, including all the ACLs needed by MirrorMaker 2.0 to allow operations on the source and target Kafka clusters.
Strimzi is running
Separate namespaces for source and target clusters
The procedure assumes that the source and target Kafka clusters are installed to separate namespaces If you want to use the Topic Operator, you’ll need to do this. The Topic Operator only watches a single cluster in a specified namespace.
By separating the clusters into namespaces, you will need to copy the cluster secrets so they can be accessed outside the namespace. You need to reference the secrets in the MirrorMaker configuration.
Configure two Kafka
resources, one to secure the source Kafka cluster and one to secure the target Kafka cluster.
You can add listener configuration for authentication and enable authorization.
In this example, an internal listener is configured for a Kafka cluster with TLS encryption and mTLS authentication.
Kafka simple
authorization is enabled.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-source-cluster
spec:
kafka:
version: 3.4.0
replicas: 1
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
authorization:
type: simple
config:
offsets.topic.replication.factor: 1
transaction.state.log.replication.factor: 1
transaction.state.log.min.isr: 1
default.replication.factor: 1
min.insync.replicas: 1
inter.broker.protocol.version: "3.4"
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
zookeeper:
replicas: 1
storage:
type: persistent-claim
size: 100Gi
deleteClaim: false
entityOperator:
topicOperator: {}
userOperator: {}
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-target-cluster
spec:
kafka:
version: 3.4.0
replicas: 1
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
authorization:
type: simple
config:
offsets.topic.replication.factor: 1
transaction.state.log.replication.factor: 1
transaction.state.log.min.isr: 1
default.replication.factor: 1
min.insync.replicas: 1
inter.broker.protocol.version: "3.4"
storage:
type: jbod
volumes:
- id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
zookeeper:
replicas: 1
storage:
type: persistent-claim
size: 100Gi
deleteClaim: false
entityOperator:
topicOperator: {}
userOperator: {}
Create or update the Kafka
resources in separate namespaces.
kubectl apply -f <kafka_configuration_file> -n <namespace>
The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA) certificates to enable authentication within the Kafka cluster.
The certificates are created in the secret <cluster_name>-cluster-ca-cert
.
Configure two KafkaUser
resources, one for a user of the source Kafka cluster and one for a user of the target Kafka cluster.
Configure the same authentication and authorization types as the corresponding source and target Kafka cluster.
For example, if you used tls
authentication and the simple
authorization type in the Kafka
configuration for the source Kafka cluster, use the same in the KafkaUser
configuration.
Configure the ACLs needed by MirrorMaker 2.0 to allow operations on the source and target Kafka clusters.
The ACLs are used by the internal MirrorMaker connectors, and by the underlying Kafka Connect framework.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
name: my-source-user
labels:
strimzi.io/cluster: my-source-cluster
spec:
authentication:
type: tls
authorization:
type: simple
acls:
# MirrorSourceConnector
- resource: # Not needed if offset-syncs.topic.location=target
type: topic
name: mm2-offset-syncs.my-target-cluster.internal
operations:
- Create
- DescribeConfigs
- Read
- Write
- resource: # Needed for every topic which is mirrored
type: topic
name: "*"
operations:
- DescribeConfigs
- Read
# MirrorCheckpointConnector
- resource:
type: cluster
operations:
- Describe
- resource: # Needed for every group for which offsets are synced
type: group
name: "*"
operations:
- Describe
- resource: # Not needed if offset-syncs.topic.location=target
type: topic
name: mm2-offset-syncs.my-target-cluster.internal
operations:
- Read
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
name: my-target-user
labels:
strimzi.io/cluster: my-target-cluster
spec:
authentication:
type: tls
authorization:
type: simple
acls:
# Underlying Kafka Connect internal topics to store configuration, offsets, or status
- resource:
type: group
name: mirrormaker2-cluster
operations:
- Read
- resource:
type: topic
name: mirrormaker2-cluster-configs
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
- resource:
type: topic
name: mirrormaker2-cluster-status
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
- resource:
type: topic
name: mirrormaker2-cluster-offsets
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
# MirrorSourceConnector
- resource: # Needed for every topic which is mirrored
type: topic
name: "*"
operations:
- Create
- Alter
- AlterConfigs
- Write
# MirrorCheckpointConnector
- resource:
type: cluster
operations:
- Describe
- resource:
type: topic
name: my-source-cluster.checkpoints.internal
operations:
- Create
- Describe
- Read
- Write
- resource: # Needed for every group for which the offset is synced
type: group
name: "*"
operations:
- Read
- Describe
# MirrorHeartbeatConnector
- resource:
type: topic
name: heartbeats
operations:
- Create
- Describe
- Write
Note
|
You can use a certificate issued outside the User Operator by setting type to tls-external .
For more information, see KafkaUserSpec schema reference.
|
Create or update a KafkaUser
resource in each of the namespaces you created for the source and target Kafka clusters.
kubectl apply -f <kafka_user_configuration_file> -n <namespace>
The User Operator creates the users representing the client (MirrorMaker), and the security credentials used for client authentication, based on the chosen authentication type.
The User Operator creates a new secret with the same name as the KafkaUser
resource.
The secret contains a private and public key for mTLS authentication.
The public key is contained in a user certificate, which is signed by the clients CA.
Configure a KafkaMirrorMaker2
resource with the authentication details to connect to the source and target Kafka clusters.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker-2
spec:
version: 3.4.0
replicas: 1
connectCluster: "my-target-cluster"
clusters:
- alias: "my-source-cluster"
bootstrapServers: my-source-cluster-kafka-bootstrap:9093
tls: # (1)
trustedCertificates:
- secretName: my-source-cluster-cluster-ca-cert
certificate: ca.crt
authentication: # (2)
type: tls
certificateAndKey:
secretName: my-source-user
certificate: user.crt
key: user.key
- alias: "my-target-cluster"
bootstrapServers: my-target-cluster-kafka-bootstrap:9093
tls: # (3)
trustedCertificates:
- secretName: my-target-cluster-cluster-ca-cert
certificate: ca.crt
authentication: # (4)
type: tls
certificateAndKey:
secretName: my-target-user
certificate: user.crt
key: user.key
config:
# -1 means it will use the default replication factor configured in the broker
config.storage.replication.factor: -1
offset.storage.replication.factor: -1
status.storage.replication.factor: -1
mirrors:
- sourceCluster: "my-source-cluster"
targetCluster: "my-target-cluster"
sourceConnector:
config:
replication.factor: 1
offset-syncs.topic.replication.factor: 1
sync.topic.acls.enabled: "false"
heartbeatConnector:
config:
heartbeats.topic.replication.factor: 1
checkpointConnector:
config:
checkpoints.topic.replication.factor: 1
sync.group.offsets.enabled: "true"
topicsPattern: "topic1|topic2|topic3"
groupsPattern: "group1|group2|group3"
The TLS certificates for the source Kafka cluster. If they are in a separate namespace, copy the cluster secrets from the namespace of the Kafka cluster.
The user authentication for accessing the source Kafka cluster using the TLS mechanism.
The TLS certificates for the target Kafka cluster.
The user authentication for accessing the target Kafka cluster.
Create or update the KafkaMirrorMaker2
resource in the same namespace as the target Kafka cluster.
kubectl apply -f <mirrormaker2_configuration_file> -n <namespace_of_target_cluster>
type-KafkaMirrorMaker2ClusterSpec-reference[]
This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector by using a Kubernetes annotation.
The Cluster Operator is running.
Find the name of the KafkaMirrorMaker2
custom resource that controls the Kafka MirrorMaker 2.0 connector you want to restart:
kubectl get KafkaMirrorMaker2
Find the name of the Kafka MirrorMaker 2.0 connector to be restarted from the KafkaMirrorMaker2
custom resource.
kubectl describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME
To restart the connector, annotate the KafkaMirrorMaker2
resource in Kubernetes.
In this example, kubectl annotate
restarts a connector named my-source->my-target.MirrorSourceConnector
:
kubectl annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-connector=my-source->my-target.MirrorSourceConnector"
Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector is restarted, as long as the annotation was detected by the reconciliation process.
When the restart request is accepted, the annotation is removed from the KafkaMirrorMaker2
custom resource.
This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2.0 connector task by using a Kubernetes annotation.
The Cluster Operator is running.
Find the name of the KafkaMirrorMaker2
custom resource that controls the Kafka MirrorMaker 2.0 connector you want to restart:
kubectl get KafkaMirrorMaker2
Find the name of the Kafka MirrorMaker 2.0 connector and the ID of the task to be restarted from the KafkaMirrorMaker2
custom resource.
Task IDs are non-negative integers, starting from 0.
kubectl describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME
To restart the connector task, annotate the KafkaMirrorMaker2
resource in Kubernetes.
In this example, kubectl annotate
restarts task 0 of a connector named my-source->my-target.MirrorSourceConnector
:
kubectl annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-connector-task=my-source->my-target.MirrorSourceConnector:0"
Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2.0 connector task is restarted, as long as the annotation was detected by the reconciliation process.
When the restart task request is accepted, the annotation is removed from the KafkaMirrorMaker2
custom resource.
Configure a Kafka MirrorMaker deployment using the KafkaMirrorMaker
resource.
KafkaMirrorMaker replicates data between Kafka clusters.
KafkaMirrorMaker
schema reference describes the full schema of the KafkaMirrorMaker
resource.
You can use Strimzi with MirrorMaker or MirrorMaker 2.0. MirrorMaker 2.0 is the latest version, and offers a more efficient way to mirror data between Kafka clusters.
Important
|
Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0.
As a result, the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has been deprecated in Strimzi as well.
The KafkaMirrorMaker resource will be removed from Strimzi when we adopt Apache Kafka 4.0.0.
As a replacement, use the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy .
|
Use the properties of the KafkaMirrorMaker
resource to configure your Kafka MirrorMaker deployment.
You can configure access control for producers and consumers using TLS or SASL authentication. This procedure shows a configuration that uses TLS encryption and mTLS authentication on the consumer and producer side.
See the Deploying and Upgrading Strimzi guide for instructions on running a:
Source and target Kafka clusters must be available
Edit the spec
properties for the KafkaMirrorMaker
resource.
The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
name: my-mirror-maker
spec:
replicas: 3 (1)
consumer:
bootstrapServers: my-source-cluster-kafka-bootstrap:9092 (2)
groupId: "my-group" (3)
numStreams: 2 (4)
offsetCommitInterval: 120000 (5)
tls: (6)
trustedCertificates:
- secretName: my-source-cluster-ca-cert
certificate: ca.crt
authentication: (7)
type: tls
certificateAndKey:
secretName: my-source-secret
certificate: public.crt
key: private.key
config: (8)
max.poll.records: 100
receive.buffer.bytes: 32768
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" (9)
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS (10)
producer:
bootstrapServers: my-target-cluster-kafka-bootstrap:9092
abortOnSendFailure: false (11)
tls:
trustedCertificates:
- secretName: my-target-cluster-ca-cert
certificate: ca.crt
authentication:
type: tls
certificateAndKey:
secretName: my-target-secret
certificate: public.crt
key: private.key
config:
compression.type: gzip
batch.size: 8192
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" (12)
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS (13)
include: "my-topic|other-topic" (14)
resources: (15)
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: (16)
type: inline
loggers:
mirrormaker.root.logger: "INFO"
readinessProbe: (17)
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
metricsConfig: (18)
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
jvmOptions: (19)
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest (20)
template: (21)
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
connectContainer: (22)
env:
- name: JAEGER_SERVICE_NAME
value: my-jaeger-service
- name: JAEGER_AGENT_HOST
value: jaeger-agent-name
- name: JAEGER_AGENT_PORT
value: "6831"
tracing: (23)
type: jaeger
Bootstrap servers for consumer and producer.
TLS encryption with key names under which TLS certificates are stored in X.509 format for consumer or producer. If certificates are stored in the same secret, it can be listed multiple times.
Authentication for consumer or producer, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.
SSL properties for external listeners to run with a specific cipher suite for a TLS version.
Hostname verification is enabled by setting to HTTPS
. An empty string disables the verification.
If the abortOnSendFailure
property is set to true
, Kafka MirrorMaker will exit and the container will restart following a send failure for a message.
SSL properties for external listeners to run with a specific cipher suite for a TLS version.
Hostname verification is enabled by setting to HTTPS
. An empty string disables the verification.
A included topics mirrored from source to target Kafka cluster.
Requests for reservation of supported resources, currently cpu
and memory
, and limits to specify the maximum resources that can be consumed.
Specified loggers and log levels added directly (inline
) or indirectly (external
) through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
or log4j2.properties
key. MirrorMaker has a single logger called mirrormaker.root.logger
. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.
Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for the Prometheus JMX exporter in this example. You can enable metrics without further configuration using a reference to a ConfigMap containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key
.
JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka MirrorMaker.
ADVANCED OPTION: Container image configuration, which is recommended only in special situations.
Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
Environment variables are set for distributed tracing.
Distributed tracing is enabled for Jaeger.
Warning
|
With the abortOnSendFailure property set to false , the producer attempts to send the next message in a topic. The original message might be lost, as there is no attempt to resend a failed message.
|
Create or update the resource:
kubectl apply -f <your-file>
The following resources are created by the Cluster Operator in the Kubernetes cluster:
Deployment which is responsible for creating the Kafka MirrorMaker pods.
ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a volume by the Kafka broker pods.
Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.
Configure a Kafka Bridge deployment using the KafkaBridge
resource.
Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.
KafkaBridge
schema reference describes the full schema of the KafkaBridge
resource.
Use the Kafka Bridge to make HTTP-based requests to the Kafka cluster.
Use the properties of the KafkaBridge
resource to configure your Kafka Bridge deployment.
In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge instances, address-based routing must be employed to ensure that requests are routed to the right Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A Kafka Bridge instance has its own state which is not shared with another instances.
A Kubernetes cluster
A running Cluster Operator
See the Deploying and Upgrading Strimzi guide for instructions on running a:
Edit the spec
properties for the KafkaBridge
resource.
The properties you can configure are shown in this example configuration:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:
replicas: 3 (1)
bootstrapServers: <cluster_name>-cluster-kafka-bootstrap:9092 (2)
tls: (3)
trustedCertificates:
- secretName: my-cluster-cluster-cert
certificate: ca.crt
- secretName: my-cluster-cluster-cert
certificate: ca2.crt
authentication: (4)
type: tls
certificateAndKey:
secretName: my-secret
certificate: public.crt
key: private.key
http: (5)
port: 8080
cors: (6)
allowedOrigins: "https://strimzi.io"
allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
consumer: (7)
config:
auto.offset.reset: earliest
producer: (8)
config:
delivery.timeout.ms: 300000
resources: (9)
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: (10)
type: inline
loggers:
logger.bridge.level: "INFO"
# enabling DEBUG just for send operation
logger.send.name: "http.openapi.operation.send"
logger.send.level: "DEBUG"
jvmOptions: (11)
"-Xmx": "1g"
"-Xms": "1g"
readinessProbe: (12)
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
image: my-org/my-image:latest (13)
template: (14)
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
bridgeContainer: (15)
env:
- name: JAEGER_SERVICE_NAME
value: my-jaeger-service
- name: JAEGER_AGENT_HOST
value: jaeger-agent-name
- name: JAEGER_AGENT_PORT
value: "6831"
Bootstrap server for connection to the target Kafka cluster. Use the name of the Kafka cluster as the <cluster_name>.
TLS encryption with key names under which TLS certificates are stored in X.509 format for the source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.
Authentication for the Kafka Bridge cluster, specified as mTLS, token-based OAuth, SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, the Kafka Bridge connects to Kafka brokers without authentication.
HTTP access to Kafka brokers.
CORS access specifying selected resources and access methods. Additional HTTP headers in requests describe the origins that are permitted access to the Kafka cluster.
Consumer configuration options.
Producer configuration options.
Requests for reservation of supported resources, currently cpu
and memory
, and limits to specify the maximum resources that can be consumed.
Specified Kafka Bridge loggers and log levels added directly (inline
) or indirectly (external
) through a ConfigMap. A custom ConfigMap must be placed under the log4j.properties
or log4j2.properties
key. For the Kafka Bridge loggers, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.
JVM configuration options to optimize performance for the Virtual Machine (VM) running the Kafka Bridge.
Healthchecks to know when to restart a container (liveness) and when a container can accept traffic (readiness).
Optional: Container image configuration, which is recommended only in special situations.
Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on nodes with the same hostname.
Environment variables are set for distributed tracing.
Create or update the resource:
kubectl apply -f KAFKA-BRIDGE-CONFIG-FILE
The following resources are created by the Cluster Operator in the Kubernetes cluster:
Deployment which is in charge to create the Kafka Bridge worker node pods.
Service which exposes the REST interface of the Kafka Bridge cluster.
ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the Kafka broker pods.
Pod Disruption Budget configured for the Kafka Bridge worker nodes.
A Strimzi deployment creates Kubernetes resources, such as Deployments
, StatefulSets
, Pods
, and Services
.
These resources are managed by Strimzi operators.
Only the operator that is responsible for managing a particular Kubernetes resource can change that resource.
If you try to manually change an operator-managed Kubernetes resource, the operator will revert your changes back.
Changing an operator-managed Kubernetes resource can be useful if you want to perform certain tasks, such as:
Adding custom labels or annotations that control how Pods
are treated by Istio or other services
Managing how Loadbalancer
-type Services are created by the cluster
You can make the changes using the template
property in the Strimzi custom resources.
The template
property is supported in the following resources.
The API reference provides more details about the customizable fields.
Kafka.spec.kafka
Kafka.spec.zookeeper
Kafka.spec.entityOperator
Kafka.spec.kafkaExporter
Kafka.spec.cruiseControl
Kafka.spec.jmxTrans
KafkaConnect.spec
KafkaMirrorMaker.spec
KafkaMirrorMaker2.spec
KafkaBridge.spec
KafkaUser.spec
In the following example, the template
property is used to modify the labels in a Kafka broker’s pod.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
labels:
app: my-cluster
spec:
kafka:
# ...
template:
pod:
metadata:
labels:
mylabel: myvalue
# ...
Strimzi allows you to customize the image pull policy for containers in all pods deployed by the Cluster Operator.
The image pull policy is configured using the environment variable STRIMZI_IMAGE_PULL_POLICY
in the Cluster Operator deployment.
The STRIMZI_IMAGE_PULL_POLICY
environment variable can be set to three different values:
Always
Container images are pulled from the registry every time the pod is started or restarted.
IfNotPresent
Container images are pulled from the registry only when they were not pulled before.
Never
Container images are never pulled from the registry.
Currently, the image pull policy can only be customized for all Kafka, Kafka Connect, and Kafka MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.
Apply a termination grace period to give a Kafka cluster enough time to shut down cleanly.
Specify the time using the terminationGracePeriodSeconds
property.
Add the property to the template.pod
configuration of the Kafka
custom resource.
The time you add will depend on the size of your Kafka cluster. The Kubernetes default for the termination grace period is 30 seconds. If you observe that your clusters are not shutting down cleanly, you can increase the termination grace period.
A termination grace period is applied every time a pod is restarted. The period begins when Kubernetes sends a term (termination) signal to the processes running in the pod. The period should reflect the amount of time required to transfer the processes of the terminating pod to another pod before they are stopped. After the period ends, a kill signal stops any processes still running in the pod.
The following example adds a termination grace period of 120 seconds to the Kafka
custom resource.
You can also specify the configuration in the custom resources of other Kafka components.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
template:
pod:
terminationGracePeriodSeconds: 120
# ...
# ...
When two applications are scheduled to the same Kubernetes node, both applications might use the same resources like disk I/O and impact performance. That can lead to performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka are the best ways how to avoid such problems.
Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto nodes.
Affinity, tolerations and topology spread constraints are configured using the affinity
, tolerations
, and topologySpreadConstraint
properties in following resources:
Kafka.spec.kafka.template.pod
Kafka.spec.zookeeper.template.pod
Kafka.spec.entityOperator.template.pod
KafkaConnect.spec.template.pod
KafkaBridge.spec.template.pod
KafkaMirrorMaker.spec.template.pod
KafkaMirrorMaker2.spec.template.pod
The format of the affinity
, tolerations
, and topologySpreadConstraint
properties follows the Kubernetes specification.
The affinity configuration can include different types of affinity:
Pod affinity and anti-affinity
Node affinity
Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do not share nodes with other workloads, such as databases.
The Kubernetes cluster usually consists of many different types of worker nodes. Some are optimized for CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or network. Using different nodes helps to optimize both costs and performance. To achieve the best possible performance, it is important to allow scheduling of Strimzi components to use the right nodes.
Kubernetes uses node affinity to schedule workloads onto specific nodes.
Node affinity allows you to create a scheduling constraint for the node on which the pod will be scheduled.
The constraint is specified as a label selector.
You can specify the label using either the built-in node label like beta.kubernetes.io/instance-type
or custom labels to select the right node.
Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring node affinity and tolerations.
Cluster administrators can mark selected Kubernetes nodes as tainted. Nodes with taints are excluded from regular scheduling and normal pods will not be scheduled to run on them. Only services which can tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes will be system services such as log collectors or software defined networks.
Running Kafka and its components on dedicated nodes can have many advantages. There will be no other applications running on the same nodes which could cause disturbance or consume the resources needed for Kafka. That can lead to improved performance and stability.
Many Kafka brokers or ZooKeeper nodes can run on the same Kubernetes worker node.
If the worker node fails, they will all become unavailable at the same time.
To improve reliability, you can use podAntiAffinity
configuration to schedule each Kafka broker or ZooKeeper node on a different Kubernetes worker node.
A Kubernetes cluster
A running Cluster Operator
Edit the affinity
property in the resource specifying the cluster deployment.
To make sure that no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use the strimzi.io/name
label.
Set the topologyKey
to kubernetes.io/hostname
to specify that the selected pods are not scheduled on nodes with the same hostname.
This will still allow the same worker node to be shared by a single Kafka broker and a single ZooKeeper node.
For example:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/name
operator: In
values:
- CLUSTER-NAME-kafka
topologyKey: "kubernetes.io/hostname"
# ...
zookeeper:
# ...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/name
operator: In
values:
- CLUSTER-NAME-zookeeper
topologyKey: "kubernetes.io/hostname"
# ...
Where CLUSTER-NAME
is the name of your Kafka custom resource.
If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same worker node, use the strimzi.io/cluster
label.
For example:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/cluster
operator: In
values:
- CLUSTER-NAME
topologyKey: "kubernetes.io/hostname"
# ...
zookeeper:
# ...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/cluster
operator: In
values:
- CLUSTER-NAME
topologyKey: "kubernetes.io/hostname"
# ...
Where CLUSTER-NAME
is the name of your Kafka custom resource.
Create or update the resource.
kubectl apply -f <kafka_configuration_file>
Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using podAntiAffinity
, Kubernetes will not schedule Kafka brokers on the same nodes as other workloads.
Typically, you want to avoid Kafka running on the same worker node as other network or storage intensive applications such as databases, storage or other messaging platforms.
A Kubernetes cluster
A running Cluster Operator
Edit the affinity
property in the resource specifying the cluster deployment.
Use labels to specify the pods which should not be scheduled on the same nodes.
The topologyKey
should be set to kubernetes.io/hostname
to specify that the selected pods should not be scheduled on nodes with the same hostname.
For example:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
# ...
zookeeper:
# ...
Create or update the resource.
This can be done using kubectl apply
:
kubectl apply -f <kafka_configuration_file>
A Kubernetes cluster
A running Cluster Operator
Label the nodes where Strimzi components should be scheduled.
This can be done using kubectl label
:
kubectl label node NAME-OF-NODE node-type=fast-network
Alternatively, some of the existing labels might be reused.
Edit the affinity
property in the resource specifying the cluster deployment.
For example:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
template:
pod:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-type
operator: In
values:
- fast-network
# ...
zookeeper:
# ...
Create or update the resource.
This can be done using kubectl apply
:
kubectl apply -f <kafka_configuration_file>
A Kubernetes cluster
A running Cluster Operator
Select the nodes which should be used as dedicated.
Make sure there are no workloads scheduled on these nodes.
Set the taints on the selected nodes:
This can be done using kubectl taint
:
kubectl taint node NAME-OF-NODE dedicated=Kafka:NoSchedule
Additionally, add a label to the selected nodes as well.
This can be done using kubectl label
:
kubectl label node NAME-OF-NODE dedicated=Kafka
Edit the affinity
and tolerations
properties in the resource specifying the cluster deployment.
For example:
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
template:
pod:
tolerations:
- key: "dedicated"
operator: "Equal"
value: "Kafka"
effect: "NoSchedule"
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: dedicated
operator: In
values:
- Kafka
# ...
zookeeper:
# ...
Create or update the resource.
This can be done using kubectl apply
:
kubectl apply -f <kafka_configuration_file>
Configure logging levels in the custom resources of Kafka components and Strimzi Operators.
You can specify the logging levels directly in the spec.logging
property of the custom resource.
Or you can define the logging properties in a ConfigMap that’s referenced in the custom resource using the configMapKeyRef
property.
The advantages of using a ConfigMap are that the logging properties are maintained in one place and are accessible to more than one resource. You can also reuse the ConfigMap for more than one resource. If you are using a ConfigMap to specify loggers for Strimzi Operators, you can also append the logging specification to add filters.
You specify a logging type
in your logging specification:
inline
when specifying logging levels directly
external
when referencing a ConfigMap
inline
logging configurationspec:
# ...
logging:
type: inline
loggers:
kafka.root.logger.level: "INFO"
external
logging configurationspec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-config-map-key
Values for the name
and key
of the ConfigMap are mandatory.
Default logging is used if the name
or key
is not set.
For more information on configuring logging for specific Kafka components or operators, see the following sections.
To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as part of the logging definition in the spec
of a resource.
The ConfigMap must contain the appropriate logging configuration.
log4j.properties
for Kafka components, ZooKeeper, and the Kafka Bridge
log4j2.properties
for the Topic Operator and User Operator
The configuration must be placed under these properties.
In this procedure a ConfigMap defines a root logger for a Kafka resource.
Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.
ConfigMap example with a root logger definition for Kafka:
kind: ConfigMap
apiVersion: v1
metadata:
name: logging-configmap
data:
log4j.properties:
kafka.root.logger.level="INFO"
If you are using a properties file, specify the file at the command line:
kubectl create configmap logging-configmap --from-file=log4j.properties
The properties file defines the logging configuration:
# Define the logger
kafka.root.logger.level="INFO"
# ...
Define external logging in the spec
of the resource, setting the logging.valueFrom.configMapKeyRef.name
to the name of the ConfigMap and logging.valueFrom.configMapKeyRef.key
to the key in this ConfigMap.
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: logging-configmap
key: log4j.properties
Create or update the resource.
kubectl apply -f <kafka_configuration_file>
If you are using a ConfigMap to configure the (log4j2) logging levels for Strimzi Operators, you can also define logging filters to limit what’s returned in the log.
Logging filters are useful when you have a large number of logging messages.
Suppose you set the log level for the logger as DEBUG (rootLogger.level="DEBUG"
).
Logging filters reduce the number of logs returned for the logger at that level, so you can focus on a specific resource.
When the filter is set, only log messages matching the filter are logged.
Filters use markers to specify what to include in the log.
You specify a kind, namespace and name for the marker.
For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka
, and use the namespace and name of the failing cluster.
This example shows a marker filter for a Kafka cluster named my-kafka-cluster
.
rootLogger.level="INFO"
appender.console.filter.filter1.type=MarkerFilter (1)
appender.console.filter.filter1.onMatch=ACCEPT (2)
appender.console.filter.filter1.onMismatch=DENY (3)
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) (4)
The MarkerFilter
type compares a specified marker for filtering.
The onMatch
property accepts the log if the marker matches.
The onMismatch
property rejects the log if the marker does not match.
The marker used for filtering is in the format KIND(NAMESPACE/NAME-OF-RESOURCE).
You can create one or more filters. Here, the log is filtered for two Kafka clusters.
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1)
appender.console.filter.filter2.type=MarkerFilter
appender.console.filter.filter2.onMatch=ACCEPT
appender.console.filter.filter2.onMismatch=DENY
appender.console.filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)
To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
).
Update the 050-ConfigMap-strimzi-cluster-operator.yaml
file to add the filter properties to the ConfigMap.
In this example, the filter properties return logs only for the my-kafka-cluster
Kafka cluster:
kind: ConfigMap
apiVersion: v1
metadata:
name: strimzi-cluster-operator
data:
log4j2.properties:
#...
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)
Alternatively, edit the ConfigMap
directly:
kubectl edit configmap strimzi-cluster-operator
If you updated the YAML file instead of editing the ConfigMap
directly, apply the changes by deploying the ConfigMap:
kubectl create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml
To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.
In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach is used for the User Operator.
Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.
In this example, the filter properties return logs only for the my-topic
topic:
kind: ConfigMap
apiVersion: v1
metadata:
name: logging-configmap
data:
log4j2.properties:
rootLogger.level="INFO"
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
If you are using a properties file, specify the file at the command line:
kubectl create configmap logging-configmap --from-file=log4j2.properties
The properties file defines the logging configuration:
# Define the logger
rootLogger.level="INFO"
# Set the filters
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
# ...
Define external logging in the spec
of the resource, setting the logging.valueFrom.configMapKeyRef.name
to the name of the ConfigMap and logging.valueFrom.configMapKeyRef.key
to the key in this ConfigMap.
For the Topic Operator, logging is specified in the topicOperator
configuration of the Kafka
resource.
spec:
# ...
entityOperator:
topicOperator:
logging:
type: external
valueFrom:
configMapKeyRef:
name: logging-configmap
key: log4j2.properties
Apply the changes by deploying the Cluster Operator:
create -f install/cluster-operator -n my-cluster-operator-namespace
Use configuration provider plugins to load configuration data from external sources. The providers operate independently of Strimzi. You can use them to load configuration data for all Kafka components, including producers and consumers. Use them, for example, to provide the credentials for Kafka Connect connector configuration.
The Kubernetes Configuration Provider plugin loads configuration data from Kubernetes secrets or ConfigMaps.
Suppose you have a Secret
object that’s managed outside the Kafka namespace, or outside the Kafka cluster.
The Kubernetes Configuration Provider allows you to reference the values of the secret in your configuration without extracting the files.
You just need to tell the provider what secret to use and provide access rights.
The provider loads the data without needing to restart the Kafka component, even when using a new Secret
or ConfigMap
object.
This capability avoids disruption when a Kafka Connect instance hosts multiple connectors.
The Environment Variables Configuration Provider plugin loads configuration data from environment variables.
The values for the environment variables can be mapped from secrets or ConfigMaps. You can use the Environment Variables Configuration Provider, for example, to load certificates or JAAS configuration from environment variables mapped from Kubernetes secrets.
Note
|
Kubernetes Configuration Provider can’t use mounted files.
For example, it can’t load values that need the location of a truststore or keystore.
Instead, you can mount ConfigMaps or secrets into a Kafka Connect pod as environment variables or volumes.
You can use the Environment Variables Configuration Provider to load values for environment variables.
You add configuration using the externalConfiguration property in KafkaConnect.spec .
You don’t need to set up access rights with this approach.
However, Kafka Connect will need a restart when using a new Secret or ConfigMap for a connector.
This will cause disruption to all the Kafka Connect instance’s connectors.
|
This procedure shows how to use the Kubernetes Configuration Provider plugin.
In the procedure, an external ConfigMap
object provides configuration properties for a connector.
A Kubernetes cluster is available.
A Kafka cluster is running.
The Cluster Operator is running.
Create a ConfigMap
or Secret
that contains the configuration properties.
In this example, a ConfigMap
object named my-connector-configuration
contains connector properties:
ConfigMap
with connector propertiesapiVersion: v1
kind: ConfigMap
metadata:
name: my-connector-configuration
data:
option1: value1
option2: value2
Specify the Kubernetes Configuration Provider in the Kafka Connect configuration.
The specification shown here can support loading values from secrets and ConfigMaps.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
annotations:
strimzi.io/use-connector-resources: "true"
spec:
# ...
config:
# ...
config.providers: secrets,configmaps # (1)
config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProvider # (2)
config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider # (3)
# ...
The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers
, taking the form config.providers.${alias}.class
.
KubernetesSecretConfigProvider
provides values from secrets.
KubernetesConfigMapConfigProvider
provides values from config maps.
Create or update the resource to enable the provider.
kubectl apply -f <kafka_connect_configuration_file>
Create a role that permits access to the values in the external config map.
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: connector-configuration-role
rules:
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["my-connector-configuration"]
verbs: ["get"]
# ...
The rule gives the role permission to access the my-connector-configuration
config map.
Create a role binding to permit access to the namespace that contains the config map.
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: connector-configuration-role-binding
subjects:
- kind: ServiceAccount
name: my-connect-connect
namespace: my-project
roleRef:
kind: Role
name: connector-configuration-role
apiGroup: rbac.authorization.k8s.io
# ...
The role binding gives the role permission to access the my-project
namespace.
The service account must be the same one used by the Kafka Connect deployment.
The service account name format is <cluster_name>-connect, where <cluster_name> is the name of the KafkaConnect
custom resource.
Reference the config map in the connector configuration.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: my-connector
labels:
strimzi.io/cluster: my-connect
spec:
# ...
config:
option: ${configmaps:my-project/my-connector-configuration:option1}
# ...
# ...
Placeholders for the property values in the config map are referenced in the connector configuration.
The placeholder structure is configmaps:<path_and_file_name>:<property>
.
KubernetesConfigMapConfigProvider
reads and extracts the option1 property value from the external config map.
This procedure shows how to use the Environment Variables Configuration Provider plugin.
In the procedure, environment variables provide configuration properties for a connector. A database password is specified as an environment variable.
A Kubernetes cluster is available.
A Kafka cluster is running.
The Cluster Operator is running.
Specify the Environment Variables Configuration Provider in the Kafka Connect configuration.
Define environment variables using the externalConfiguration
property.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
annotations:
strimzi.io/use-connector-resources: "true"
spec:
# ...
config:
# ...
config.providers: env # (1)
config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider # (2)
# ...
externalConfiguration:
env:
- name: DB_PASSWORD # (3)
valueFrom:
secretKeyRef:
name: db-creds # (4)
key: dbPassword # (5)
# ...
The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers
, taking the form config.providers.${alias}.class
.
EnvVarConfigProvider
provides values from environment variables.
The DB_PASSWORD
environment variable takes a password value from a secret.
The name of the secret containing the predefined password.
The key for the password stored inside the secret.
Create or update the resource to enable the provider.
kubectl apply -f <kafka_connect_configuration_file>
Reference the environment variable in the connector configuration.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: my-connector
labels:
strimzi.io/cluster: my-connect
spec:
# ...
config:
option: ${env:DB_PASSWORD}
# ...
# ...
Security context defines constraints on pods and containers. By specifying a security context, pods and containers only have the permissions they need. For example, permissions can control runtime operations or access to resources.
Use security provider plugins or template configuration to apply security context to Strimzi pods and containers.
Apply security context at the pod or container level:
Pod-level security context is applied to all containers in a specific pod.
Container-level security context is applied to a specific container.
With Strimzi, security context is applied through one or both of the following methods:
Use template
configuration of Strimzi custom resources to specify security context at the pod or container level.
Use pod security provider plugins to automatically set security context across all pods and containers using preconfigured settings.
Pod security providers offer a simpler alternative to specifying security context through template
configuration.
You can use both approaches.
The template
approach has a higher priority.
Security context configured through template
properties overrides the configuration set by pod security providers.
So you might use pod security providers to automatically configure the security context for most containers.
And also use template
configuration to set container-specific security context where needed.
The template
approach provides flexibility, but it also means you have to configure security context in numerous places to capture the security you want for all pods and containers.
For example, you’ll need to apply the configuration to each pod in a Kafka cluster, as well as the pods for deployments of other Kafka components.
To avoid repeating the same configuration, you can use the following pod security provider plugins so that the security configuration is in one place.
The Baseline Provider is based on the Kubernetes baseline security profile. The baseline profile prevents privilege escalations and defines other standard access controls and limitations.
The Restricted Provider is based on the Kubernetes restricted security profile. The restricted profile is more restrictive than the baseline profile, and is used where security needs to be tighter.
For more information on the Kubernetes security profiles, see Pod security standards.
In the following example, security context is configured for Kafka brokers in the template
configuration of the Kafka
resource.
Security context is specified at the pod and container level.
template
configuration for security contextapiVersion: {KafkaApiVersion}
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
kafka:
template:
pod: # (1)
securityContext:
runAsUser: 1000001
fsGroup: 0
kafkaContainer: # (2)
securityContext:
runAsUser: 2000
# ...
Pod security context
Container security context of the Kafka broker container
The Baseline Provider is the default pod security provider. It configures the pods managed by Strimzi with a baseline security profile. The baseline profile is compatible with previous versions of Strimzi.
The Baseline Provider is enabled by default if you don’t specify a provider.
Though you can enable it explicitly by setting the STRIMZI_POD_SECURITY_PROVIDER_CLASS
environment variable to baseline
when configuring the Cluster Operator.
# ...
env:
# ...
- name: STRIMZI_POD_SECURITY_PROVIDER_CLASS
value: baseline
# ...
Instead of specifying baseline
as the value, you can specify the io.strimzi.plugin.security.profiles.impl.BaselinePodSecurityProvider
fully-qualified domain name.
The Restricted Provider provides a higher level of security than the Baseline Provider. It configures the pods managed by Strimzi with a restricted security profile.
You enable the Restricted Provider by setting the STRIMZI_POD_SECURITY_PROVIDER_CLASS
environment variable to restricted
when configuring the Cluster Operator.
# ...
env:
# ...
- name: STRIMZI_POD_SECURITY_PROVIDER_CLASS
value: restricted
# ...
Instead of specifying restricted
as the value, you can specify the io.strimzi.plugin.security.profiles.impl.RestrictedPodSecurityProvider
fully-qualified domain name.
If you change to the Restricted Provider from the default Baseline Provider, the following restrictions are implemented in addition to the constraints defined in the baseline security profile:
Limits allowed volume types
Disallows privilege escalation
Requires applications to run under a non-root user
Requires seccomp
(secure computing mode) profiles to be set as RuntimeDefault
or Localhost
Limits container capabilities to use only the NET_BIND_SERVICE
capability
With the Restricted Provider enabled, containers created by the Cluster Operator are set with the following security context.
# ...
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop:
- ALL
runAsNonRoot: true
seccompProfile:
type: RuntimeDefault
# ...
Note
|
Container capabilities and
|
Security context on Kubernetes
Pod security standards on Kubernetes (including profile descriptions)
Security pod providers configure the security context constraints of the pods and containers created by the Cluster Operator.
The Baseline Provider is the default pod security provider used by Strimzi.
You can switch to the Restricted Provider by changing the STRIMZI_POD_SECURITY_PROVIDER_CLASS
environment variable in the Cluster Operator configuration.
To make the required changes, configure the 060-Deployment-strimzi-cluster-operator.yaml
Cluster Operator installation file located in install/cluster-operator/
.
By enabling a new pod security provider, any pods or containers created by the Cluster Operator are subject to the limitations it imposes. Pods and containers that are already running are restarted for the changes to take affect.
You need an account with permission to create and manage CustomResourceDefinition
and RBAC (ClusterRole
, and RoleBinding
) resources.
Edit the Deployment
resource that is used to deploy the Cluster Operator, which is defined in the 060-Deployment-strimzi-cluster-operator.yaml
file.
Add or amend the STRIMZI_POD_SECURITY_PROVIDER_CLASS
environment variable with a value of restricted
.
# ...
env:
# ...
- name: STRIMZI_POD_SECURITY_PROVIDER_CLASS
value: restricted
# ...
Or you can specify the io.strimzi.plugin.security.profiles.impl.RestrictedPodSecurityProvider
fully-qualified domain name.
Deploy the Cluster Operator:
kubectl create -f install/cluster-operator -n myproject
(Optional) Use template
configuration to set security context for specific components at the pod or container level.
template
configurationtemplate:
pod:
securityContext:
runAsUser: 1000001
fsGroup: 0
kafkaContainer:
securityContext:
runAsUser: 2000
# ...
If you apply specific security context for a component using template
configuration, it takes priority over the general configuration provided by the pod security provider.
If Strimzi’s Baseline Provider and Restricted Provider don’t quite match your needs, you can develop a custom pod security provider to deliver all-encompassing pod and container security context constraints.
Implement a custom pod security provider to apply your own security context profile. You can decide what applications and privileges to include in the profile.
Your custom pod security provider can implement the PodSecurityProvider.java
interface that gets the security context for pods and containers; or it can extend the Baseline Provider or Restricted Provider classes.
The pod security provider plugins use the Java Service Provider Interface, so your custom pod security provider also requires a provider configuration file for service discovery.
To implement your own provider, the general steps include the following:
Build the JAR file for the provider.
Add the JAR file to the Cluster Operator image.
Specify the custom pod security provider when setting the Cluster Operator environment variable STRIMZI_POD_SECURITY_PROVIDER_CLASS
.
Handling of security context depends on the tooling of the Kubernetes platform you are using.
For example, OpenShift uses built-in security context constraints (SCCs) to control permissions. SCCs are the settings and strategies that control the security features a pod has access to.
By default, OpenShift injects security context configuration automatically. In most cases, this means you don’t need to configure security context for the pods and containers created by the Cluster Operator. Although you can still create and manage your own SCCs.
For more information, see the OpenShift documentation.
Common configuration properties apply to more than one resource.
replicas
Use the replicas
property to configure replicas.
The type of replication depends on the resource.
KafkaTopic
uses a replication factor to configure the number of replicas of each partition within a Kafka cluster.
Kafka components use replicas to configure the number of pods in a deployment to provide better availability and scalability.
Note
|
When running a Kafka component on Kubernetes it may not be necessary to run multiple replicas for high availability. When the node where the component is deployed crashes, Kubernetes will automatically reschedule the Kafka component pod to a different node. However, running Kafka components with multiple replicas can provide faster failover times as the other nodes will be up and running. |
bootstrapServers
Use the bootstrapServers
property to configure a list of bootstrap servers.
The bootstrap server lists can refer to Kafka clusters that are not deployed in the same Kubernetes cluster. They can also refer to a Kafka cluster not deployed by Strimzi.
If on the same Kubernetes cluster, each list must ideally contain the Kafka cluster bootstrap service which is named CLUSTER-NAME-kafka-bootstrap
and a port number.
If deployed by Strimzi but on different Kubernetes clusters, the list content depends on the approach used for exposing the clusters (routes, ingress, nodeports or loadbalancers).
When using Kafka with a Kafka cluster not managed by Strimzi, you can specify the bootstrap servers list according to the configuration of the given cluster.
ssl
You can incorporate SSL configuration and cipher suite specifications to further secure TLS-based communication between your client application and a Kafka cluster. In addition to the standard TLS configuration, you can specify a supported TLS version and enable cipher suites in the configuration for the Kafka broker. You can also add the configuration to your clients if you wish to limit the TLS versions and cipher suites they use. The configuration on the client must only use protocols and cipher suites that are enabled on the broker.
A cipher suite is a set of security mechanisms for secure connection and data transfer.
For example, the cipher suite TLS_AES_256_GCM_SHA384
is composed of the following mechanisms, which are used in conjunction with the TLS protocol:
AES (Advanced Encryption Standard) encryption (256-bit key)
GCM (Galois/Counter Mode) authenticated encryption
SHA384 (Secure Hash Algorithm) data integrity protection
The combination is encapsulated in the TLS_AES_256_GCM_SHA384
cipher suite specification.
The ssl.enabled.protocols
property specifies the available TLS versions that can be used for secure communication between the cluster and its clients.
The ssl.protocol
property sets the default TLS version for all connections, and it must be chosen from the enabled protocols.
Use the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
# ...
config:
ssl.cipher.suites: "TLS_AES_256_GCM_SHA384", "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384" # (1)
ssl.enabled.protocols: "TLSv1.3", "TLSv1.2" # (2)
ssl.protocol: "TLSv1.3" # (3)
ssl.endpoint.identification.algorithm: HTTPS # (4)
# ...
Cipher suite specifications enabled.
TLS versions supported.
Default TLS version is TLSv1.3
. If a client only supports TLSv1.2, it can still connect to the broker and communicate using that supported version, and vice versa if the configuration is on the client and the broker only supports TLSv1.2.
Hostname verification is enabled by setting to HTTPS
. An empty string disables the verification.
trustedCertificates
Having set tls
to configure TLS encryption, use the trustedCertificates
property to provide a list of secrets with key names under which the certificates are stored in X.509 format.
You can use the secrets created by the Cluster Operator for the Kafka cluster,
or you can create your own TLS certificate file, then create a Secret
from the file:
kubectl create secret generic MY-SECRET \
--from-file=MY-TLS-CERTIFICATE-FILE.crt
tls:
trustedCertificates:
- secretName: my-cluster-cluster-cert
certificate: ca.crt
- secretName: my-cluster-cluster-cert
certificate: ca2.crt
If certificates are stored in the same secret, it can be listed multiple times.
If you want to enable TLS encryption, but use the default set of public certification authorities shipped with Java,
you can specify trustedCertificates
as an empty array:
tls:
trustedCertificates: []
For information on configuring mTLS authentication, see the KafkaClientAuthenticationTls
schema reference.
resources
Configure resource requests and limits to control resources for Strimzi containers.
You can specify requests and limits for memory
and cpu
resources.
The requests should be enough to ensure a stable performance of Kafka.
How you configure resources in a production environment depends on a number of factors. For example, applications are likely to be sharing resources in your Kubernetes cluster.
For Kafka, the following aspects of a deployment can impact the resources you need:
Throughput and size of messages
The number of network threads handling messages
The number of producers and consumers
The number of topics and partitions
The values specified for resource requests are reserved and always available to the container. Resource limits specify the maximum resources that can be consumed by a given container. The amount between the request and limit is not reserved and might not be always available. A container can use the resources up to the limit only when they are available. Resource limits are temporary and can be reallocated.
If you set limits without requests or vice versa, Kubernetes uses the same value for both. Setting equal requests and limits for resources guarantees quality of service, as Kubernetes will not kill containers unless they exceed their limits.
You can configure resource requests and limits for one or more supported resources.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
resources:
requests:
memory: 64Gi
cpu: "8"
limits:
memory: 64Gi
cpu: "12"
entityOperator:
#...
topicOperator:
#...
resources:
requests:
memory: 512Mi
cpu: "1"
limits:
memory: 512Mi
cpu: "1"
Resource requests and limits for the Topic Operator and User Operator are set in the Kafka
resource.
If the resource request is for more than the available free resources in the Kubernetes cluster, the pod is not scheduled.
Note
|
Strimzi uses the Kubernetes syntax for specifying memory and cpu resources.
For more information about managing computing resources on Kubernetes, see Managing Compute Resources for Containers.
|
When configuring memory resources, consider the total requirements of the components.
Kafka runs inside a JVM and uses an operating system page cache to store message data before writing to disk.
The memory request for Kafka should fit the JVM heap and page cache.
You can configure the jvmOptions
property to control the minimum and maximum heap size.
Other components don’t rely on the page cache.
You can configure memory resources without configuring the jvmOptions
to control the heap size.
Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes. Use the following suffixes in the specification:
M
for megabytes
G
for gigabytes
Mi
for mebibytes
Gi
for gibibytes
# ...
resources:
requests:
memory: 512Mi
limits:
memory: 2Gi
# ...
For more details about memory specification and additional supported units, see Meaning of memory.
A CPU request should be enough to give a reliable performance at any time. CPU requests and limits are specified as cores or millicpus/millicores.
CPU cores are specified as integers (5
CPU core) or decimals (2.5
CPU core).
1000 millicores is the same as 1
CPU core.
# ...
resources:
requests:
cpu: 500m
limits:
cpu: 2.5
# ...
The computing power of 1 CPU core may differ depending on the platform where Kubernetes is deployed.
For more information on CPU specification, see Meaning of CPU.
image
Use the image
property to configure the container image used by the component.
Overriding container images is recommended only in special situations where you need to use a different container registry or a customized image.
For example, if your network does not allow access to the container repository used by Strimzi, you can copy the Strimzi images or build them from the source. However, if the configured image is not compatible with Strimzi images, it might not work properly.
A copy of the container image might also be customized and used for debugging.
You can specify which container image to use for a component using the image
property in the following resources:
Kafka.spec.kafka
Kafka.spec.zookeeper
Kafka.spec.entityOperator.topicOperator
Kafka.spec.entityOperator.userOperator
Kafka.spec.entityOperator.tlsSidecar
Kafka.spec.jmxTrans
KafkaConnect.spec
KafkaMirrorMaker.spec
KafkaMirrorMaker2.spec
KafkaBridge.spec
Configuring the image
property for Kafka, Kafka Connect, and Kafka MirrorMaker
Kafka, Kafka Connect, and Kafka MirrorMaker support multiple versions of Kafka. Each component requires its own image. The default images for the different Kafka versions are configured in the following environment variables:
STRIMZI_KAFKA_IMAGES
STRIMZI_KAFKA_CONNECT_IMAGES
STRIMZI_KAFKA_MIRROR_MAKER_IMAGES
These environment variables contain mappings between the Kafka versions and their corresponding images.
The mappings are used together with the image
and version
properties:
If neither image
nor version
are given in the custom resource then the version
will default to the Cluster Operator’s default Kafka version, and the image will be the one corresponding to this version in the environment variable.
If image
is given but version
is not, then the given image is used and the version
is assumed to be the Cluster Operator’s default Kafka version.
If version
is given but image
is not, then the image that corresponds to the given version in the environment variable is used.
If both version
and image
are given, then the given image is used. The image is assumed to contain a Kafka image with the given version.
The image
and version
for the different components can be configured in the following properties:
For Kafka in spec.kafka.image
and spec.kafka.version
.
For Kafka Connect and Kafka MirrorMaker in spec.image
and spec.version
.
Warning
|
It is recommended to provide only the version and leave the image property unspecified.
This reduces the chance of making a mistake when configuring the custom resource.
If you need to change the images used for different versions of Kafka, it is preferable to configure the Cluster Operator’s environment variables.
|
Configuring the image
property in other resources
For the image
property in the other custom resources, the given value will be used during deployment.
If the image
property is missing, the image
specified in the Cluster Operator configuration will be used.
If the image
name is not defined in the Cluster Operator configuration, then the default value will be used.
For Topic Operator:
Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/operator:0.34.0
container image.
For User Operator:
Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/operator:0.34.0
container image.
For Entity Operator TLS sidecar:
Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/kafka:0.34.0-kafka-3.4.0
container image.
For Kafka Exporter:
Container image specified in the STRIMZI_DEFAULT_KAFKA_EXPORTER_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/kafka:0.34.0-kafka-3.4.0
container image.
For Kafka Bridge:
Container image specified in the STRIMZI_DEFAULT_KAFKA_BRIDGE_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/kafka-bridge:0.25.0
container image.
For Kafka broker initializer:
Container image specified in the STRIMZI_DEFAULT_KAFKA_INIT_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/operator:0.34.0
container image.
For Kafka jmxTrans:
Container image specified in the STRIMZI_DEFAULT_JMXTRANS_IMAGE
environment variable from the Cluster Operator configuration.
quay.io/strimzi/jmxtrans:0.34.0
container image.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
image: my-org/my-image:latest
# ...
zookeeper:
# ...
livenessProbe
and readinessProbe
healthchecksUse the livenessProbe
and readinessProbe
properties to configure healthcheck probes supported in Strimzi.
Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe fails, Kubernetes assumes that the application is not healthy and attempts to fix it.
For more details about the probes, see Configure Liveness and Readiness Probes.
Both livenessProbe
and readinessProbe
support the following options:
initialDelaySeconds
timeoutSeconds
periodSeconds
successThreshold
failureThreshold
# ...
readinessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
# ...
For more information about the livenessProbe
and readinessProbe
options, see the Probe schema reference.
metricsConfig
Use the metricsConfig
property to enable and configure Prometheus metrics.
The metricsConfig
property contains a reference to a ConfigMap that has additional configurations for the Prometheus JMX Exporter.
Strimzi supports Prometheus metrics using Prometheus JMX exporter to convert the JMX metrics supported by Apache Kafka and ZooKeeper to Prometheus metrics.
To enable Prometheus metrics export without further configuration, you can reference a ConfigMap containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key
.
When referencing an empty file, all metrics are exposed as long as they have not been renamed.
kind: ConfigMap
apiVersion: v1
metadata:
name: my-configmap
data:
my-key: |
lowercaseOutputName: true
rules:
# Special cases and very specific rules
- pattern: kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
name: kafka_server_$1_$2
type: GAUGE
labels:
clientId: "$3"
topic: "$4"
partition: "$5"
# further configuration
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
metricsConfig:
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
# ...
zookeeper:
# ...
When metrics are enabled, they are exposed on port 9404.
When the metricsConfig
(or deprecated metrics
) property is not defined in the resource, the Prometheus metrics are disabled.
For more information about setting up and deploying Prometheus and Grafana, see Introducing Metrics to Kafka in the Deploying and Upgrading Strimzi guide.
jvmOptions
The following Strimzi components run inside a Java Virtual Machine (JVM):
Apache Kafka
Apache ZooKeeper
Apache Kafka Connect
Apache Kafka MirrorMaker
Strimzi Kafka Bridge
To optimize their performance on different platforms and architectures, you configure the jvmOptions
property in the following resources:
Kafka.spec.kafka
Kafka.spec.zookeeper
Kafka.spec.entityOperator.userOperator
Kafka.spec.entityOperator.topicOperator
Kafka.spec.cruiseControl
KafkaConnect.spec
KafkaMirrorMaker.spec
KafkaMirrorMaker2.spec
KafkaBridge.spec
You can specify the following options in your configuration:
-Xms
Minimum initial allocation heap size when the JVM starts
-Xmx
Maximum heap size
-XX
Advanced runtime options for the JVM
javaSystemProperties
Additional system properties
gcLoggingEnabled
Note
|
The units accepted by JVM settings, such as -Xmx and -Xms , are the same units accepted by the JDK java binary in the corresponding image.
Therefore, 1g or 1G means 1,073,741,824 bytes, and Gi is not a valid unit suffix.
This is different from the units used for memory requests and limits, which follow the Kubernetes convention where 1G means 1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes.
|
-Xms
and -Xmx
optionsIn addition to setting memory request and limit values for your containers, you can use the -Xms
and -Xmx
JVM options to set specific heap sizes for your JVM.
Use the -Xms
option to set an initial heap size and the -Xmx
option to set a maximum heap size.
Specify heap size to have more control over the memory allocated to your JVM. Heap sizes should make the best use of a container’s memory limit (and request) without exceeding it. Heap size and any other memory requirements need to fit within a specified memory limit. If you don’t specify heap size in your configuration, but you configure a memory resource limit (and request), the Cluster Operator imposes default heap sizes automatically. The Cluster Operator sets default maximum and minimum heap values based on a percentage of the memory resource configuration.
The following table shows the default heap values.
Component | Percent of available memory allocated to the heap | Maximum limit |
---|---|---|
Kafka |
50% |
5 GB |
ZooKeeper |
75% |
2 GB |
Kafka Connect |
75% |
None |
MirrorMaker 2.0 |
75% |
None |
MirrorMaker |
75% |
None |
Cruise Control |
75% |
None |
Kafka Bridge |
50% |
31 Gi |
If a memory limit (and request) is not specified, a JVM’s minimum heap size is set to 128M
.
The JVM’s maximum heap size is not defined to allow the memory to increase as needed.
This is ideal for single node environments in test and development.
Setting an appropriate memory request can prevent the following:
Kubernetes killing a container if there is pressure on memory from other pods running on the node.
Kubernetes scheduling a container to a node with insufficient memory.
If -Xms
is set to -Xmx
, the container will crash immediately; if not, the container will crash at a later time.
In this example, the JVM uses 2 GiB (=2,147,483,648 bytes) for its heap. Total JVM memory usage can be a lot more than the maximum heap size.
-Xmx
and -Xms
configuration# ...
jvmOptions:
"-Xmx": "2g"
"-Xms": "2g"
# ...
Setting the same value for initial (-Xms
) and maximum (-Xmx
) heap sizes avoids the JVM having to allocate memory after startup, at the cost of possibly allocating more heap than is really needed.
Important
|
Containers performing lots of disk I/O, such as Kafka broker containers, require available memory for use as an operating system page cache. For such containers, the requested memory should be significantly higher than the memory used by the JVM. |
-XX
options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS
option of Apache Kafka.
-XX
configurationjvmOptions:
"-XX":
"UseG1GC": true
"MaxGCPauseMillis": 20
"InitiatingHeapOccupancyPercent": 35
"ExplicitGCInvokesConcurrent": true
-XX
configuration-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC
Note
|
When no -XX options are specified, the default Apache Kafka configuration of KAFKA_JVM_PERFORMANCE_OPTS is used.
|
javaSystemProperties
javaSystemProperties
are used to configure additional Java system properties, such as debugging utilities.
javaSystemProperties
configurationjvmOptions:
javaSystemProperties:
- name: javax.net.debug
value: ssl
For more information about the jvmOptions
, see the JvmOptions
schema reference.
The jvmOptions
property also allows you to enable and disable garbage collector (GC) logging.
GC logging is disabled by default.
To enable it, set the gcLoggingEnabled
property as follows:
# ...
jvmOptions:
gcLoggingEnabled: true
# ...
Kafka
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka and ZooKeeper clusters, and Topic Operator. |
status |
The status of the Kafka and ZooKeeper clusters, and Topic Operator. |
KafkaSpec
schema referenceUsed in: Kafka
Property | Description |
---|---|
kafka |
Configuration of the Kafka cluster. |
zookeeper |
Configuration of the ZooKeeper cluster. |
entityOperator |
Configuration of the Entity Operator. |
clusterCa |
Configuration of the cluster certificate authority. |
clientsCa |
Configuration of the clients certificate authority. |
cruiseControl |
Configuration for Cruise Control deployment. Deploys a Cruise Control instance when specified. |
jmxTrans |
The |
kafkaExporter |
Configuration of the Kafka Exporter. Kafka Exporter can provide additional metrics, for example lag of consumer group at topic/partition. |
maintenanceTimeWindows |
A list of time windows for maintenance tasks (that is, certificates renewal). Each time window is defined by a cron expression. |
string array |
KafkaClusterSpec
schema referenceUsed in: KafkaSpec
Configures a Kafka cluster.
listeners
Use the listeners
property to configure listeners to provide access to Kafka brokers.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
listeners:
- name: plain
port: 9092
type: internal
tls: false
# ...
zookeeper:
# ...
config
Use the config
properties to configure Kafka broker options as keys.
Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.
Configuration options that cannot be configured relate to:
Security (Encryption, Authentication, and Authorization)
Listener configuration
Broker ID configuration
Configuration of log data directories
Inter-broker communication
ZooKeeper connectivity
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the Apache Kafka documentation with the exception of those options that are managed directly by Strimzi. Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
listeners
advertised.
broker.
listener.
host.name
port
inter.broker.listener.name
sasl.
ssl.
security.
password.
principal.builder.class
log.dir
zookeeper.connect
zookeeper.set.acl
authorizer.
super.user
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other supported options are passed to Kafka.
There are exceptions to the forbidden options.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure the zookeeper.connection.timeout.ms
property to set the maximum time allowed for establishing a ZooKeeper connection.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
config:
num.partitions: 1
num.recovery.threads.per.data.dir: 1
default.replication.factor: 3
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 1
log.retention.hours: 168
log.segment.bytes: 1073741824
log.retention.check.interval.ms: 300000
num.network.threads: 3
num.io.threads: 8
socket.send.buffer.bytes: 102400
socket.receive.buffer.bytes: 102400
socket.request.max.bytes: 104857600
group.initial.rebalance.delay.ms: 0
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
zookeeper.connection.timeout.ms: 6000
# ...
brokerRackInitImage
When rack awareness is enabled, Kafka broker pods use init container to collect the labels from the Kubernetes cluster nodes.
The container image used for this container can be configured using the brokerRackInitImage
property.
When the brokerRackInitImage
field is missing, the following images are used in order of priority:
Container image specified in STRIMZI_DEFAULT_KAFKA_INIT_IMAGE
environment variable in the Cluster Operator configuration.
quay.io/strimzi/operator:0.34.0
container image.
brokerRackInitImage
configurationapiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
brokerRackInitImage: my-org/my-image:latest
# ...
Note
|
Overriding container images is recommended only in special situations, where you need to use a different container registry. For example, because your network does not allow access to the container registry used by Strimzi. In this case, you should either copy the Strimzi images or build them from the source. If the configured image is not compatible with Strimzi images, it might not work properly. |
logging
Kafka has its own configurable loggers:
log4j.logger.org.I0Itec.zkclient.ZkClient
log4j.logger.org.apache.zookeeper
log4j.logger.kafka
log4j.logger.org.apache.kafka
log4j.logger.kafka.request.logger
log4j.logger.kafka.network.Processor
log4j.logger.kafka.server.KafkaApis
log4j.logger.kafka.network.RequestChannel$
log4j.logger.kafka.controller
log4j.logger.kafka.log.LogCleaner
log4j.logger.state.change.logger
log4j.logger.kafka.authorizer.logger
Kafka uses the Apache log4j
logger implementation.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
# ...
kafka:
# ...
logging:
type: inline
loggers:
kafka.root.logger.level: "INFO"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: kafka-log4j.properties
# ...
Any available loggers that are not configured have their level set to OFF
.
If Kafka was deployed using the Cluster Operator, changes to Kafka logging levels are applied dynamically.
If you use external logging, a rolling update is triggered when logging appenders are changed.
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
KafkaClusterSpec
schema propertiesProperty | Description |
---|---|
version |
The kafka broker version. Defaults to 3.4.0. Consult the user documentation to understand the process required to upgrade or downgrade the version. |
string |
|
replicas |
The number of pods in the cluster. |
integer |
|
image |
The docker image for the pods. The default value depends on the configured |
string |
|
listeners |
Configures listeners of Kafka brokers. |
|
|
config |
Kafka broker config properties with the following prefixes cannot be set: listeners, advertised., broker., listener., host.name, port, inter.broker.listener.name, sasl., ssl., security., password., log.dir, zookeeper.connect, zookeeper.set.acl, zookeeper.ssl, zookeeper.clientCnxnSocket, authorizer., super.user, cruise.control.metrics.topic, cruise.control.metrics.reporter.bootstrap.servers,node.id, process.roles, controller. (with the exception of: zookeeper.connection.timeout.ms, sasl.server.max.receive.size,ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols, ssl.secure.random.implementation,cruise.control.metrics.topic.num.partitions, cruise.control.metrics.topic.replication.factor, cruise.control.metrics.topic.retention.ms,cruise.control.metrics.topic.auto.create.retries, cruise.control.metrics.topic.auto.create.timeout.ms,cruise.control.metrics.topic.min.insync.replicas,controller.quorum.election.backoff.max.ms, controller.quorum.election.timeout.ms, controller.quorum.fetch.timeout.ms). |
map |
|
storage |
Storage configuration (disk). Cannot be updated. The type depends on the value of the |
authorization |
Authorization configuration for Kafka brokers. The type depends on the value of the |
|
|
rack |
Configuration of the |
brokerRackInitImage |
The image of the init container used for initializing the |
string |
|
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
jvmOptions |
JVM Options for pods. |
jmxOptions |
JMX Options for Kafka brokers. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
metricsConfig |
Metrics configuration. The type depends on the value of the |
logging |
Logging configuration for Kafka. The type depends on the value of the |
template |
Template for Kafka cluster resources. The template allows users to specify how the |
GenericKafkaListener
schema referenceUsed in: KafkaClusterSpec
Configures listeners to connect to Kafka brokers within and outside Kubernetes.
You configure the listeners in the Kafka
resource.
Kafka
resource showing listener configurationapiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
- name: external1
port: 9094
type: route
tls: true
- name: external2
port: 9095
type: ingress
tls: true
authentication:
type: tls
configuration:
bootstrap:
host: bootstrap.myingress.com
brokers:
- broker: 0
host: broker-0.myingress.com
- broker: 1
host: broker-1.myingress.com
- broker: 2
host: broker-2.myingress.com
#...
listeners
You configure Kafka broker listeners using the listeners
property in the Kafka
resource.
Listeners are defined as an array.
listeners:
- name: plain
port: 9092
type: internal
tls: false
The name and port must be unique within the Kafka cluster. The name can be up to 25 characters long, comprising lower-case letters and numbers. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX.
By specifying a unique name and port for each listener, you can configure multiple listeners.
type
The type is set as internal
,
or for external listeners, as route
, loadbalancer
, nodeport
, ingress
or cluster-ip
.
You can also configure a cluster-ip
listener, a type of internal listener you can use to build custom access mechanisms.
You can configure internal listeners with or without encryption using the tls
property.
internal
listener configuration#...
spec:
kafka:
#...
listeners:
#...
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
#...
Configures an external listener to expose Kafka using OpenShift Routes
and the HAProxy router.
A dedicated Route
is created for every Kafka broker pod.
An additional Route
is created to serve as a Kafka bootstrap address.
Kafka clients can use these Routes
to connect to Kafka on port 443.
The client connects on port 443, the default router port, but traffic is then routed to the port you configure,
which is 9094
in this example.
route
listener configuration#...
spec:
kafka:
#...
listeners:
#...
- name: external1
port: 9094
type: route
tls: true
#...
Configures an external listener to expose Kafka using Kubernetes Ingress
and the Ingress NGINX Controller for Kubernetes.
A dedicated Ingress
resource is created for every Kafka broker pod.
An additional Ingress
resource is created to serve as a Kafka bootstrap address.
Kafka clients can use these Ingress
resources to connect to Kafka on port 443.
The client connects on port 443, the default controller port, but traffic is then routed to the port you configure,
which is 9095
in the following example.
You must specify the hostnames used by the bootstrap and per-broker services
using GenericKafkaListenerConfigurationBootstrap
and GenericKafkaListenerConfigurationBroker
properties.
ingress
listener configuration#...
spec:
kafka:
#...
listeners:
#...
- name: external2
port: 9095
type: ingress
tls: true
authentication:
type: tls
configuration:
bootstrap:
host: bootstrap.myingress.com
brokers:
- broker: 0
host: broker-0.myingress.com
- broker: 1
host: broker-1.myingress.com
- broker: 2
host: broker-2.myingress.com
#...
Note
|
External listeners using Ingress are currently only tested with the Ingress NGINX Controller for Kubernetes.
|
Configures an external listener to expose Kafka using a Loadbalancer
type Service
.
A new loadbalancer service is created for every Kafka broker pod.
An additional loadbalancer is created to serve as a Kafka bootstrap address.
Loadbalancers listen to the specified port number, which is port 9094
in the following example.
You can use the loadBalancerSourceRanges
property to configure source ranges to restrict access to the specified IP addresses.
loadbalancer
listener configuration#...
spec:
kafka:
#...
listeners:
- name: external3
port: 9094
type: loadbalancer
tls: true
configuration:
loadBalancerSourceRanges:
- 10.0.0.0/8
- 88.208.76.87/32
#...
Configures an external listener to expose Kafka using a NodePort
type Service
.
Kafka clients connect directly to the nodes of Kubernetes.
An additional NodePort
type of service is created to serve as a Kafka bootstrap address.
When configuring the advertised addresses for the Kafka broker pods, Strimzi uses the address of the node on which the given pod is running.
You can use preferredNodePortAddressType
property to configure the first address type checked as the node address.
nodeport
listener configuration#...
spec:
kafka:
#...
listeners:
#...
- name: external4
port: 9095
type: nodeport
tls: false
configuration:
preferredNodePortAddressType: InternalDNS
#...
Note
|
TLS hostname verification is not currently supported when exposing Kafka clusters using node ports. |
Configures an internal listener to expose Kafka using a per-broker ClusterIP
type Service
.
The listener does not use a headless service and its DNS names to route traffic to Kafka brokers. You can use this type of listener to expose a Kafka cluster when using the headless service is unsuitable. You might use it with a custom access mechanism, such as one that uses a specific Ingress controller or the Kubernetes Gateway API.
A new ClusterIP
service is created for each Kafka broker pod.
The service is assigned a ClusterIP
address to serve as a Kafka bootstrap address with a per-broker port number.
For example, you can configure the listener to expose a Kafka cluster over an Nginx Ingress Controller with TCP port configuration.
cluster-ip
listener configuration#...
spec:
kafka:
#...
listeners:
- name: external-cluster-ip
type: cluster-ip
tls: false
port: 9096
#...
port
The port number is the port used in the Kafka cluster, which might not be the same port used for access by a client.
loadbalancer
listeners use the specified port number, as do internal
and cluster-ip
listeners
ingress
and route
listeners use port 443 for access
nodeport
listeners use the port number assigned by Kubernetes
For client connection, use the address and port for the bootstrap service of the listener.
You can retrieve this from the status of the Kafka
resource.
kubectl get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?(@.name=="<listener_name>")].bootstrapServers}{"\n"}'
Note
|
Listeners cannot be configured to use the ports set aside for interbroker communication (9090 and 9091) and metrics (9404). |
tls
The TLS property is required.
By default, TLS encryption is not enabled.
To enable it, set the tls
property to true
.
For route
and ingress
type listeners, TLS encryption must be enabled.
authentication
Authentication for the listener can be specified as:
mTLS (tls
)
SCRAM-SHA-512 (scram-sha-512
)
Token-based OAuth 2.0 (oauth
)
networkPolicyPeers
Use networkPolicyPeers
to configure network policies that restrict access to a listener at the network level.
The following example shows a networkPolicyPeers
configuration for a plain
and a tls
listener.
In the following example:
Only application pods matching the labels app: kafka-sasl-consumer
and app: kafka-sasl-producer
can connect to the plain
listener.
The application pods must be running in the same namespace as the Kafka broker.
Only application pods running in namespaces matching the labels project: myproject
and project: myproject2
can connect to the tls
listener.
The syntax of the networkPolicyPeers
property is the same as the from
property in NetworkPolicy
resources.
listeners:
#...
- name: plain
port: 9092
type: internal
tls: true
authentication:
type: scram-sha-512
networkPolicyPeers:
- podSelector:
matchLabels:
app: kafka-sasl-consumer
- podSelector:
matchLabels:
app: kafka-sasl-producer
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
networkPolicyPeers:
- namespaceSelector:
matchLabels:
project: myproject
- namespaceSelector:
matchLabels:
project: myproject2
# ...
GenericKafkaListener
schema propertiesProperty | Description |
---|---|
name |
Name of the listener. The name will be used to identify the listener and the related Kubernetes objects. The name has to be unique within given a Kafka cluster. The name can consist of lowercase characters and numbers and be up to 11 characters long. |
string |
|
port |
Port number used by the listener inside Kafka. The port number has to be unique within a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on the listener type, the port number might not be the same as the port number that connects Kafka clients. |
integer |
|
type |
Type of the listener. Currently the supported types are
|
string (one of [ingress, internal, route, loadbalancer, cluster-ip, nodeport]) |
|
tls |
Enables TLS encryption on the listener. This is a required property. |
boolean |
|
authentication |
Authentication configuration for this listener. The type depends on the value of the |
|
|
configuration |
Additional listener configuration. |
networkPolicyPeers |
List of peers which should be able to connect to this listener. Peers in this list are combined using a logical OR operation. If this field is empty or missing, all connections will be allowed for this listener. If this field is present and contains at least one item, the listener only allows the traffic which matches at least one item in this list. For more information, see the external documentation for networking.k8s.io/v1 networkpolicypeer. |
NetworkPolicyPeer array |
KafkaListenerAuthenticationTls
schema referenceUsed in: GenericKafkaListener
The type
property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls
type from KafkaListenerAuthenticationScramSha512
, KafkaListenerAuthenticationOAuth
, KafkaListenerAuthenticationCustom
.
It must have the value tls
for the type KafkaListenerAuthenticationTls
.
Property | Description |
---|---|
type |
Must be |
string |
KafkaListenerAuthenticationScramSha512
schema referenceUsed in: GenericKafkaListener
The type
property is a discriminator that distinguishes use of the KafkaListenerAuthenticationScramSha512
type from KafkaListenerAuthenticationTls
, KafkaListenerAuthenticationOAuth
, KafkaListenerAuthenticationCustom
.
It must have the value scram-sha-512
for the type KafkaListenerAuthenticationScramSha512
.
Property | Description |
---|---|
type |
Must be |
string |
KafkaListenerAuthenticationOAuth
schema referenceUsed in: GenericKafkaListener
The type
property is a discriminator that distinguishes use of the KafkaListenerAuthenticationOAuth
type from KafkaListenerAuthenticationTls
, KafkaListenerAuthenticationScramSha512
, KafkaListenerAuthenticationCustom
.
It must have the value oauth
for the type KafkaListenerAuthenticationOAuth
.
Property | Description |
---|---|
accessTokenIsJwt |
Configure whether the access token is treated as JWT. This must be set to |
boolean |
|
checkAccessTokenType |
Configure whether the access token type check is performed or not. This should be set to |
boolean |
|
checkAudience |
Enable or disable audience checking. Audience checks identify the recipients of tokens. If audience checking is enabled, the OAuth Client ID also has to be configured using the |
boolean |
|
checkIssuer |
Enable or disable issuer checking. By default issuer is checked using the value configured by |
boolean |
|
clientAudience |
The audience to use when making requests to the authorization server’s token endpoint. Used for inter-broker authentication and for configuring OAuth 2.0 over PLAIN using the |
string |
|
clientId |
OAuth Client ID which the Kafka broker can use to authenticate against the authorization server and use the introspect endpoint URI. |
string |
|
clientScope |
The scope to use when making requests to the authorization server’s token endpoint. Used for inter-broker authentication and for configuring OAuth 2.0 over PLAIN using the |
string |
|
clientSecret |
Link to Kubernetes Secret containing the OAuth client secret which the Kafka broker can use to authenticate against the authorization server and use the introspect endpoint URI. |
connectTimeoutSeconds |
The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds. |
integer |
|
customClaimCheck |
JsonPath filter query to be applied to the JWT token or to the response of the introspection endpoint for additional token validation. Not set by default. |
string |
|
disableTlsHostnameVerification |
Enable or disable TLS hostname verification. Default value is |
boolean |
|
enableECDSA |
The |
boolean |
|
enableMetrics |
Enable or disable OAuth metrics. Default value is |
boolean |
|
enableOauthBearer |
Enable or disable OAuth authentication over SASL_OAUTHBEARER. Default value is |
boolean |
|
enablePlain |
Enable or disable OAuth authentication over SASL_PLAIN. There is no re-authentication support when this mechanism is used. Default value is |
boolean |
|
failFast |
Enable or disable termination of Kafka broker processes due to potentially recoverable runtime errors during startup. Default value is |
boolean |
|
fallbackUserNameClaim |
The fallback username claim to be used for the user id if the claim specified by |
string |
|
fallbackUserNamePrefix |
The prefix to use with the value of |
string |
|
groupsClaim |
JsonPath query used to extract groups for the user during authentication. Extracted groups can be used by a custom authorizer. By default no groups are extracted. |
string |
|
groupsClaimDelimiter |
A delimiter used to parse groups when they are extracted as a single String value rather than a JSON array. Default value is ',' (comma). |
string |
|
httpRetries |
The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries. |
integer |
|
httpRetryPauseMs |
The pause to take before retrying a failed HTTP request. If not set, the default is to not pause at all but to immediately repeat a request. |
integer |
|
introspectionEndpointUri |
URI of the token introspection endpoint which can be used to validate opaque non-JWT tokens. |
string |
|
jwksEndpointUri |
URI of the JWKS certificate endpoint, which can be used for local JWT validation. |
string |
|
jwksExpirySeconds |
Configures how often are the JWKS certificates considered valid. The expiry interval has to be at least 60 seconds longer then the refresh interval specified in |
integer |
|
jwksIgnoreKeyUse |
Flag to ignore the 'use' attribute of |
boolean |
|
jwksMinRefreshPauseSeconds |
The minimum pause between two consecutive refreshes. When an unknown signing key is encountered the refresh is scheduled immediately, but will always wait for this minimum pause. Defaults to 1 second. |
integer |
|
jwksRefreshSeconds |
Configures how often are the JWKS certificates refreshed. The refresh interval has to be at least 60 seconds shorter then the expiry interval specified in |
integer |
|
maxSecondsWithoutReauthentication |
Maximum number of seconds the authenticated session remains valid without re-authentication. This enables Apache Kafka re-authentication feature, and causes sessions to expire when the access token expires. If the access token expires before max time or if max time is reached, the client has to re-authenticate, otherwise the server will drop the connection. Not set by default - the authenticated session does not expire when the access token expires. This option only applies to SASL_OAUTHBEARER authentication mechanism (when |
integer |
|
readTimeoutSeconds |
The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds. |
integer |
|
tlsTrustedCertificates |
Trusted certificates for TLS connection to the OAuth server. |
|
|
tokenEndpointUri |
URI of the Token Endpoint to use with SASL_PLAIN mechanism when the client authenticates with |
string |
|
type |
Must be |
string |
|
userInfoEndpointUri |
URI of the User Info Endpoint to use as a fallback to obtaining the user id when the Introspection Endpoint does not return information that can be used for the user id. |
string |
|
userNameClaim |
Name of the claim from the JWT authentication token, Introspection Endpoint response or User Info Endpoint response which will be used to extract the user id. Defaults to |
string |
|
validIssuerUri |
URI of the token issuer used for authentication. |
string |
|
validTokenType |
Valid value for the |
string |
GenericSecretSource
schema referenceUsed in: KafkaClientAuthenticationOAuth
, KafkaListenerAuthenticationCustom
, KafkaListenerAuthenticationOAuth
Property | Description |
---|---|
key |
The key under which the secret value is stored in the Kubernetes Secret. |
string |
|
secretName |
The name of the Kubernetes Secret containing the secret value. |
string |
CertSecretSource
schema referenceUsed in: ClientTls
, KafkaAuthorizationKeycloak
, KafkaAuthorizationOpa
, KafkaClientAuthenticationOAuth
, KafkaListenerAuthenticationOAuth
Property | Description |
---|---|
certificate |
The name of the file certificate in the Secret. |
string |
|
secretName |
The name of the Secret containing the certificate. |
string |
KafkaListenerAuthenticationCustom
schema referenceUsed in: GenericKafkaListener
To configure custom authentication, set the type
property to custom
.
Custom authentication allows for any type of kafka-supported authentication to be used.
spec:
kafka:
config:
principal.builder.class: SimplePrincipal.class
listeners:
- name: oauth-bespoke
port: 9093
type: internal
tls: true
authentication:
type: custom
sasl: true
listenerConfig:
oauthbearer.sasl.client.callback.handler.class: client.class
oauthbearer.sasl.server.callback.handler.class: server.class
oauthbearer.sasl.login.callback.handler.class: login.class
oauthbearer.connections.max.reauth.ms: 999999999
sasl.enabled.mechanisms: oauthbearer
oauthbearer.sasl.jaas.config: |
org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required ;
secrets:
- name: example
A protocol map is generated that uses the sasl
and tls
values to determine which protocol to map to the listener.
SASL = True, TLS = True → SASL_SSL
SASL = False, TLS = True → SSL
SASL = True, TLS = False → SASL_PLAINTEXT
SASL = False, TLS = False → PLAINTEXT
listenerConfig
Listener configuration specified using listenerConfig
is prefixed with listener.name.<listener_name>-<port>
.
For example, sasl.enabled.mechanisms
becomes listener.name.<listener_name>-<port>.sasl.enabled.mechanisms
.
secrets
Secrets are mounted to /opt/kafka/custom-authn-secrets/custom-listener-<listener_name>-<port>/<secret_name>
in the Kafka broker nodes' containers.
For example, the mounted secret (example
) in the example configuration would be located at /opt/kafka/custom-authn-secrets/custom-listener-oauth-bespoke-9093/example
.
You can set a custom principal builder in the Kafka cluster configuration. However, the principal builder is subject to the following requirements:
The specified principal builder class must exist on the image. Before building your own, check if one already exists. You’ll need to rebuild the Strimzi images with the required classes.
No other listener is using oauth
type authentication.
This is because an OAuth listener appends its own principle builder to the Kafka configuration.
The specified principal builder is compatible with Strimzi.
Custom principal builders must support peer certificates for authentication, as Strimzi uses these to manage the Kafka cluster.
A custom OAuth principal builder might be identical or very similar to the Strimzi OAuth principal builder.
Note
|
Kafka’s default principal builder class supports the building of principals based on the names of peer certificates.
The custom principal builder should provide a principal of type user using the name of the SSL peer certificate.
|
The following example shows a custom principal builder that satisfies the OAuth requirements of Strimzi.
public final class CustomKafkaPrincipalBuilder implements KafkaPrincipalBuilder {
public KafkaPrincipalBuilder() {}
@Override
public KafkaPrincipal build(AuthenticationContext context) {
if (context instanceof SslAuthenticationContext) {
SSLSession sslSession = ((SslAuthenticationContext) context).session();
try {
return new KafkaPrincipal(
KafkaPrincipal.USER_TYPE, sslSession.getPeerPrincipal().getName());
} catch (SSLPeerUnverifiedException e) {
throw new IllegalArgumentException("Cannot use an unverified peer for authentication", e);
}
}
// Create your own KafkaPrincipal here
...
}
}
KafkaListenerAuthenticationCustom
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaListenerAuthenticationCustom
type from KafkaListenerAuthenticationTls
, KafkaListenerAuthenticationScramSha512
, KafkaListenerAuthenticationOAuth
.
It must have the value custom
for the type KafkaListenerAuthenticationCustom
.
Property | Description |
---|---|
listenerConfig |
Configuration to be used for a specific listener. All values are prefixed with listener.name.<listener_name>. |
map |
|
sasl |
Enable or disable SASL on this listener. |
boolean |
|
secrets |
Secrets to be mounted to /opt/kafka/custom-authn-secrets/custom-listener-<listener_name>-<port>/<secret_name>. |
|
|
type |
Must be |
string |
GenericKafkaListenerConfiguration
schema referenceUsed in: GenericKafkaListener
Configuration for Kafka listeners.
brokerCertChainAndKey
The brokerCertChainAndKey
property is only used with listeners that have TLS encryption enabled.
You can use the property to provide your own Kafka listener certificates.
loadbalancer
external listener with TLS encryption enabledlisteners:
#...
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: tls
configuration:
brokerCertChainAndKey:
secretName: my-secret
certificate: my-listener-certificate.crt
key: my-listener-key.key
# ...
externalTrafficPolicy
The externalTrafficPolicy
property is used with loadbalancer
and nodeport
listeners.
When exposing Kafka outside of Kubernetes you can choose Local
or Cluster
.
Local
avoids hops to other nodes and preserves the client IP, whereas Cluster
does neither.
The default is Cluster
.
loadBalancerSourceRanges
The loadBalancerSourceRanges
property is only used with loadbalancer
listeners.
When exposing Kafka outside of Kubernetes use source ranges, in addition to labels and annotations, to customize how a service is created.
listeners:
#...
- name: external
port: 9094
type: loadbalancer
tls: false
configuration:
externalTrafficPolicy: Local
loadBalancerSourceRanges:
- 10.0.0.0/8
- 88.208.76.87/32
# ...
# ...
class
The class
property is only used with ingress
listeners.
You can configure the Ingress
class using the class
property.
ingress
using Ingress
class nginx-internal
listeners:
#...
- name: external
port: 9094
type: ingress
tls: true
configuration:
class: nginx-internal
# ...
# ...
preferredNodePortAddressType
The preferredNodePortAddressType
property is only used with nodeport
listeners.
Use the preferredNodePortAddressType
property in your listener configuration to specify the first address type checked as the node address.
This property is useful, for example, if your deployment does not have DNS support, or you only want to expose a broker internally through an internal DNS or IP address.
If an address of this type is found, it is used.
If the preferred address type is not found, Strimzi proceeds through the types in the standard order of priority:
ExternalDNS
ExternalIP
Hostname
InternalDNS
InternalIP
listeners:
#...
- name: external
port: 9094
type: nodeport
tls: false
configuration:
preferredNodePortAddressType: InternalDNS
# ...
# ...
useServiceDnsDomain
The useServiceDnsDomain
property is only used with internal
and cluster-ip
listeners.
It defines whether the fully-qualified DNS names that include the cluster service suffix (usually .cluster.local
) are used.
With useServiceDnsDomain
set as false
, the advertised addresses are generated without the service suffix; for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc
.
With useServiceDnsDomain
set as true
, the advertised addresses are generated with the service suffix; for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc.cluster.local
.
Default is false
.
listeners:
#...
- name: plain
port: 9092
type: internal
tls: false
configuration:
useServiceDnsDomain: true
# ...
# ...
If your Kubernetes cluster uses a different service suffix than .cluster.local
, you can configure the suffix using the KUBERNETES_SERVICE_DNS_DOMAIN
environment variable in the Cluster Operator configuration.
GenericKafkaListenerConfiguration
schema propertiesProperty | Description |
---|---|
brokerCertChainAndKey |
Reference to the |
externalTrafficPolicy |
Specifies whether the service routes external traffic to node-local or cluster-wide endpoints. |
string (one of [Local, Cluster]) |
|
loadBalancerSourceRanges |
A list of CIDR ranges (for example |
string array |
|
bootstrap |
Bootstrap configuration. |
brokers |
Per-broker configurations. |
ipFamilyPolicy |
Specifies the IP Family Policy used by the service. Available options are |
string (one of [RequireDualStack, SingleStack, PreferDualStack]) |
|
ipFamilies |
Specifies the IP Families used by the service. Available options are |
string (one or more of [IPv6, IPv4]) array |
|
createBootstrapService |
Whether to create the bootstrap service or not. The bootstrap service is created by default (if not specified differently). This field can be used with the |
boolean |
|
class |
Configures a specific class for |
string |
|
finalizers |
A list of finalizers which will be configured for the |
string array |
|
maxConnectionCreationRate |
The maximum connection creation rate we allow in this listener at any time. New connections will be throttled if the limit is reached. |
integer |
|
maxConnections |
The maximum number of connections we allow for this listener in the broker at any time. New connections are blocked if the limit is reached. |
integer |
|
preferredNodePortAddressType |
Defines which address type should be used as the node address. Available types are:
This field is used to select the preferred address type, which is checked first. If no address is found for this address type, the other types are checked in the default order. This field can only be used with |
string (one of [ExternalDNS, ExternalIP, Hostname, InternalIP, InternalDNS]) |
|
useServiceDnsDomain |
Configures whether the Kubernetes service DNS domain should be used or not. If set to |
boolean |
CertAndKeySecretSource
schema referenceProperty | Description |
---|---|
certificate |
The name of the file certificate in the Secret. |
string |
|
key |
The name of the private key in the Secret. |
string |
|
secretName |
The name of the Secret containing the certificate. |
string |
GenericKafkaListenerConfigurationBootstrap
schema referenceUsed in: GenericKafkaListenerConfiguration
Broker service equivalents of nodePort
, host
, loadBalancerIP
and annotations
properties are configured in the GenericKafkaListenerConfigurationBroker
schema.
alternativeNames
You can specify alternative names for the bootstrap service.
The names are added to the broker certificates and can be used for TLS hostname verification.
The alternativeNames
property is applicable to all types of listeners.
route
listener configured with an additional bootstrap addresslisteners:
#...
- name: external
port: 9094
type: route
tls: true
authentication:
type: tls
configuration:
bootstrap:
alternativeNames:
- example.hostname1
- example.hostname2
# ...
host
The host
property is used with route
and ingress
listeners to specify the hostnames used by the bootstrap and per-broker services.
A host
property value is mandatory for ingress
listener configuration, as the Ingress controller does not assign any hostnames automatically.
Make sure that the hostnames resolve to the Ingress endpoints.
Strimzi will not perform any validation that the requested hosts are available and properly routed to the Ingress endpoints.
listeners:
#...
- name: external
port: 9094
type: ingress
tls: true
authentication:
type: tls
configuration:
bootstrap:
host: bootstrap.myingress.com
brokers:
- broker: 0
host: broker-0.myingress.com
- broker: 1
host: broker-1.myingress.com
- broker: 2
host: broker-2.myingress.com
# ...
By default, route
listener hosts are automatically assigned by OpenShift.
However, you can override the assigned route hosts by specifying hosts.
Strimzi does not perform any validation that the requested hosts are available. You must ensure that they are free and can be used.
# ...
listeners:
#...
- name: external
port: 9094
type: route
tls: true
authentication:
type: tls
configuration:
bootstrap:
host: bootstrap.myrouter.com
brokers:
- broker: 0
host: broker-0.myrouter.com
- broker: 1
host: broker-1.myrouter.com
- broker: 2
host: broker-2.myrouter.com
# ...
nodePort
By default, the port numbers used for the bootstrap and broker services are automatically assigned by Kubernetes.
You can override the assigned node ports for nodeport
listeners by specifying the requested port numbers.
Strimzi does not perform any validation on the requested ports. You must ensure that they are free and available for use.
# ...
listeners:
#...
- name: external
port: 9094
type: nodeport
tls: true
authentication:
type: tls
configuration:
bootstrap:
nodePort: 32100
brokers:
- broker: 0
nodePort: 32000
- broker: 1
nodePort: 32001
- broker: 2
nodePort: 32002
# ...
loadBalancerIP
Use the loadBalancerIP
property to request a specific IP address when creating a loadbalancer.
Use this property when you need to use a loadbalancer with a specific IP address.
The loadBalancerIP
field is ignored if the cloud provider does not support the feature.
loadbalancer
with specific loadbalancer IP address requests# ...
listeners:
#...
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: tls
configuration:
bootstrap:
loadBalancerIP: 172.29.3.10
brokers:
- broker: 0
loadBalancerIP: 172.29.3.1
- broker: 1
loadBalancerIP: 172.29.3.2
- broker: 2
loadBalancerIP: 172.29.3.3
# ...
annotations
Use the annotations
property to add annotations to Kubernetes resources related to the listeners.
You can use these annotations, for example, to instrument DNS tooling such as External DNS, which automatically assigns DNS names to the loadbalancer services.
loadbalancer
using annotations
# ...
listeners:
#...
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: tls
configuration:
bootstrap:
annotations:
external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
external-dns.alpha.kubernetes.io/ttl: "60"
brokers:
- broker: 0
annotations:
external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
external-dns.alpha.kubernetes.io/ttl: "60"
- broker: 1
annotations:
external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
external-dns.alpha.kubernetes.io/ttl: "60"
- broker: 2
annotations:
external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
external-dns.alpha.kubernetes.io/ttl: "60"
# ...
GenericKafkaListenerConfigurationBootstrap
schema propertiesProperty | Description |
---|---|
alternativeNames |
Additional alternative names for the bootstrap service. The alternative names will be added to the list of subject alternative names of the TLS certificates. |
string array |
|
host |
The bootstrap host. This field will be used in the Ingress resource or in the Route resource to specify the desired hostname. This field can be used only with |
string |
|
nodePort |
Node port for the bootstrap service. This field can be used only with |
integer |
|
loadBalancerIP |
The loadbalancer is requested with the IP address specified in this field. This feature depends on whether the underlying cloud provider supports specifying the |
string |
|
annotations |
Annotations that will be added to the |
map |
|
labels |
Labels that will be added to the |
map |
GenericKafkaListenerConfigurationBroker
schema referenceUsed in: GenericKafkaListenerConfiguration
You can see example configuration for the nodePort
, host
, loadBalancerIP
and annotations
properties in the GenericKafkaListenerConfigurationBootstrap
schema,
which configures bootstrap service overrides.
By default, Strimzi tries to automatically determine the hostnames and ports that your Kafka cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which Strimzi is running might not provide the right hostname or port through which Kafka can be accessed.
You can specify a broker ID and customize the advertised hostname and port in the configuration
property of the listener.
Strimzi will then automatically configure the advertised address in the Kafka brokers and add it to the broker certificates so it can be used for TLS hostname verification.
Overriding the advertised host and ports is available for all types of listeners.
route
listener configured with overrides for advertised addresseslisteners:
#...
- name: external
port: 9094
type: route
tls: true
authentication:
type: tls
configuration:
brokers:
- broker: 0
advertisedHost: example.hostname.0
advertisedPort: 12340
- broker: 1
advertisedHost: example.hostname.1
advertisedPort: 12341
- broker: 2
advertisedHost: example.hostname.2
advertisedPort: 12342
# ...
GenericKafkaListenerConfigurationBroker
schema propertiesProperty | Description |
---|---|
broker |
ID of the kafka broker (broker identifier). Broker IDs start from 0 and correspond to the number of broker replicas. |
integer |
|
advertisedHost |
The host name which will be used in the brokers' |
string |
|
advertisedPort |
The port number which will be used in the brokers' |
integer |
|
host |
The broker host. This field will be used in the Ingress resource or in the Route resource to specify the desired hostname. This field can be used only with |
string |
|
nodePort |
Node port for the per-broker service. This field can be used only with |
integer |
|
loadBalancerIP |
The loadbalancer is requested with the IP address specified in this field. This feature depends on whether the underlying cloud provider supports specifying the |
string |
|
annotations |
Annotations that will be added to the |
map |
|
labels |
Labels that will be added to the |
map |
EphemeralStorage
schema referenceUsed in: JbodStorage
, KafkaClusterSpec
, ZookeeperClusterSpec
The type
property is a discriminator that distinguishes use of the EphemeralStorage
type from PersistentClaimStorage
.
It must have the value ephemeral
for the type EphemeralStorage
.
Property | Description |
---|---|
id |
Storage identification number. It is mandatory only for storage volumes defined in a storage of type 'jbod'. |
integer |
|
sizeLimit |
When type=ephemeral, defines the total amount of local storage required for this EmptyDir volume (for example 1Gi). |
string |
|
type |
Must be |
string |
PersistentClaimStorage
schema referenceUsed in: JbodStorage
, KafkaClusterSpec
, ZookeeperClusterSpec
The type
property is a discriminator that distinguishes use of the PersistentClaimStorage
type from EphemeralStorage
.
It must have the value persistent-claim
for the type PersistentClaimStorage
.
Property | Description |
---|---|
type |
Must be |
string |
|
size |
When type=persistent-claim, defines the size of the persistent volume claim (i.e 1Gi). Mandatory when type=persistent-claim. |
string |
|
selector |
Specifies a specific persistent volume to use. It contains key:value pairs representing labels for selecting such a volume. |
map |
|
deleteClaim |
Specifies if the persistent volume claim has to be deleted when the cluster is un-deployed. |
boolean |
|
class |
The storage class to use for dynamic volume allocation. |
string |
|
id |
Storage identification number. It is mandatory only for storage volumes defined in a storage of type 'jbod'. |
integer |
|
overrides |
Overrides for individual brokers. The |
PersistentClaimStorageOverride
schema referenceUsed in: PersistentClaimStorage
Property | Description |
---|---|
class |
The storage class to use for dynamic volume allocation for this broker. |
string |
|
broker |
Id of the kafka broker (broker identifier). |
integer |
JbodStorage
schema referenceUsed in: KafkaClusterSpec
The type
property is a discriminator that distinguishes use of the JbodStorage
type from EphemeralStorage
, PersistentClaimStorage
.
It must have the value jbod
for the type JbodStorage
.
Property | Description |
---|---|
type |
Must be |
string |
|
volumes |
List of volumes as Storage objects representing the JBOD disks array. |
KafkaAuthorizationSimple
schema referenceUsed in: KafkaClusterSpec
Simple authorization in Strimzi uses the AclAuthorizer
plugin, the default Access Control Lists (ACLs) authorization plugin provided with Apache Kafka.
ACLs allow you to define which users have access to which resources at a granular level.
Configure the Kafka
custom resource to use simple authorization.
Set the type
property in the authorization
section to the value simple
,
and configure a list of super users.
Access rules are configured for the KafkaUser
, as described in the ACLRule schema reference.
superUsers
A list of user principals treated as super users, so that they are always allowed without querying ACL rules.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
namespace: myproject
spec:
kafka:
# ...
authorization:
type: simple
superUsers:
- CN=client_1
- user_2
- CN=client_3
# ...
Note
|
The super.user configuration option in the config property in Kafka.spec.kafka is ignored.
Designate super users in the authorization property instead.
For more information, see Kafka broker configuration.
|
KafkaAuthorizationSimple
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaAuthorizationSimple
type from KafkaAuthorizationOpa
, KafkaAuthorizationKeycloak
, KafkaAuthorizationCustom
.
It must have the value simple
for the type KafkaAuthorizationSimple
.
Property | Description |
---|---|
type |
Must be |
string |
|
superUsers |
List of super users. Should contain list of user principals which should get unlimited access rights. |
string array |
KafkaAuthorizationOpa
schema referenceUsed in: KafkaClusterSpec
To use Open Policy Agent authorization, set the type
property in the authorization
section to the value opa
,
and configure OPA properties as required.
Strimzi uses Open Policy Agent plugin for Kafka authorization as the authorizer.
For more information about the format of the input data and policy examples, see Open Policy Agent plugin for Kafka authorization.
url
The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will be queried by the authorizer. Required.
allowOnError
Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query the Open Policy Agent, for example, when it is temporarily unavailable.
Defaults to false
- all actions will be denied.
initialCacheCapacity
Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request.
Defaults to 5000
.
maximumCacheSize
Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request.
Defaults to 50000
.
expireAfterMs
The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every request.
Defines how often the cached authorization decisions are reloaded from the Open Policy Agent server.
In milliseconds.
Defaults to 3600000
milliseconds (1 hour).
tlsTrustedCertificates
Trusted certificates for TLS connection to the OPA server.
superUsers
A list of user principals treated as super users, so that they are always allowed without querying the open Policy Agent policy.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
namespace: myproject
spec:
kafka:
# ...
authorization:
type: opa
url: http://opa:8181/v1/data/kafka/allow
allowOnError: false
initialCacheCapacity: 1000
maximumCacheSize: 10000
expireAfterMs: 60000
superUsers:
- CN=fred
- sam
- CN=edward
# ...
KafkaAuthorizationOpa
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaAuthorizationOpa
type from KafkaAuthorizationSimple
, KafkaAuthorizationKeycloak
, KafkaAuthorizationCustom
.
It must have the value opa
for the type KafkaAuthorizationOpa
.
Property | Description |
---|---|
type |
Must be |
string |
|
url |
The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will be queried by the authorizer. This option is required. |
string |
|
allowOnError |
Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query the Open Policy Agent, for example, when it is temporarily unavailable). Defaults to |
boolean |
|
initialCacheCapacity |
Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request Defaults to |
integer |
|
maximumCacheSize |
Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for every request. Defaults to |
integer |
|
expireAfterMs |
The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent server. In milliseconds. Defaults to |
integer |
|
tlsTrustedCertificates |
Trusted certificates for TLS connection to the OPA server. |
|
|
superUsers |
List of super users, which is specifically a list of user principals that have unlimited access rights. |
string array |
|
enableMetrics |
Defines whether the Open Policy Agent authorizer plugin should provide metrics. Defaults to |
boolean |
KafkaAuthorizationKeycloak
schema referenceUsed in: KafkaClusterSpec
The type
property is a discriminator that distinguishes use of the KafkaAuthorizationKeycloak
type from KafkaAuthorizationSimple
, KafkaAuthorizationOpa
, KafkaAuthorizationCustom
.
It must have the value keycloak
for the type KafkaAuthorizationKeycloak
.
Property | Description |
---|---|
type |
Must be |
string |
|
clientId |
OAuth Client ID which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI. |
string |
|
tokenEndpointUri |
Authorization server token endpoint URI. |
string |
|
tlsTrustedCertificates |
Trusted certificates for TLS connection to the OAuth server. |
|
|
disableTlsHostnameVerification |
Enable or disable TLS hostname verification. Default value is |
boolean |
|
delegateToKafkaAcls |
Whether authorization decision should be delegated to the 'Simple' authorizer if DENIED by Keycloak Authorization Services policies. Default value is |
boolean |
|
grantsRefreshPeriodSeconds |
The time between two consecutive grants refresh runs in seconds. The default value is 60. |
integer |
|
grantsRefreshPoolSize |
The number of threads to use to refresh grants for active sessions. The more threads, the more parallelism, so the sooner the job completes. However, using more threads places a heavier load on the authorization server. The default value is 5. |
integer |
|
superUsers |
List of super users. Should contain list of user principals which should get unlimited access rights. |
string array |
|
connectTimeoutSeconds |
The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds. |
integer |
|
readTimeoutSeconds |
The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds. |
integer |
|
httpRetries |
The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries. |
integer |
|
enableMetrics |
Enable or disable OAuth metrics. Default value is |
boolean |
KafkaAuthorizationCustom
schema referenceUsed in: KafkaClusterSpec
To use custom authorization in Strimzi, you can configure your own Authorizer
plugin to define Access Control Lists (ACLs).
ACLs allow you to define which users have access to which resources at a granular level.
Configure the Kafka
custom resource to use custom authorization.
Set the type
property in the authorization
section to the value custom
,
and the set following properties.
Important
|
The custom authorizer must implement the org.apache.kafka.server.authorizer.Authorizer interface, and support configuration of super.users using the super.users configuration property.
|
authorizerClass
(Required) Java class that implements the org.apache.kafka.server.authorizer.Authorizer
interface to support custom ACLs.
superUsers
A list of user principals treated as super users, so that they are always allowed without querying ACL rules.
You can add configuration for initializing the custom authorizer using Kafka.spec.kafka.config
.
Kafka.spec
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
namespace: myproject
spec:
kafka:
# ...
authorization:
type: custom
authorizerClass: io.mycompany.CustomAuthorizer
superUsers:
- CN=client_1
- user_2
- CN=client_3
# ...
config:
authorization.custom.property1=value1
authorization.custom.property2=value2
# ...
In addition to the Kafka
custom resource configuration, the JAR file containing the custom authorizer class along with its dependencies must be available on the classpath of the Kafka broker.
The Strimzi Maven build process provides a mechanism to add custom third-party libraries to the generated Kafka broker container image by adding them as dependencies in the pom.xml
file under the docker-images/kafka/kafka-thirdparty-libs
directory. The directory contains different folders for different Kafka versions. Choose the appropriate folder. Before modifying the pom.xml
file, the third-party library must be available in a Maven repository, and that Maven repository must be accessible to the Strimzi build process.
Note
|
The super.user configuration option in the config property in Kafka.spec.kafka is ignored.
Designate super users in the authorization property instead.
For more information, see Kafka broker configuration.
|
Custom authorization can make use of group membership information extracted from the JWT token during authentication when using oauth
authentication and configuring groupsClaim
configuration attribute. Groups are available on the OAuthKafkaPrincipal
object during authorize() call as follows:
public List<AuthorizationResult> authorize(AuthorizableRequestContext requestContext, List<Action> actions) {
KafkaPrincipal principal = requestContext.principal();
if (principal instanceof OAuthKafkaPrincipal) {
OAuthKafkaPrincipal p = (OAuthKafkaPrincipal) principal;
for (String group: p.getGroups()) {
System.out.println("Group: " + group);
}
}
}
KafkaAuthorizationCustom
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaAuthorizationCustom
type from KafkaAuthorizationSimple
, KafkaAuthorizationOpa
, KafkaAuthorizationKeycloak
.
It must have the value custom
for the type KafkaAuthorizationCustom
.
Property | Description |
---|---|
type |
Must be |
string |
|
authorizerClass |
Authorization implementation class, which must be available in classpath. |
string |
|
superUsers |
List of super users, which are user principals with unlimited access rights. |
string array |
|
supportsAdminApi |
Indicates whether the custom authorizer supports the APIs for managing ACLs using the Kafka Admin API. Defaults to |
boolean |
Rack
schema referenceThe rack
option configures rack awareness.
A rack can represent an availability zone, data center, or an actual rack in your data center.
The rack is configured through a topologyKey
.
topologyKey
identifies a label on Kubernetes nodes that contains the name of the topology in its value.
An example of such a label is topology.kubernetes.io/zone
(or failure-domain.beta.kubernetes.io/zone
on older Kubernetes versions), which contains the name of the availability zone in which the Kubernetes node runs.
You can configure your Kafka cluster to be aware of the rack in which it runs, and enable additional features such as spreading partition replicas across different racks or consuming messages from the closest replicas.
For more information about Kubernetes node labels, see Well-Known Labels, Annotations and Taints. Consult your Kubernetes administrator regarding the node label that represents the zone or rack into which the node is deployed.
When rack awareness is configured, Strimzi will set broker.rack
configuration for each Kafka broker.
The broker.rack
configuration assigns a rack ID to each broker.
When broker.rack
is configured, Kafka brokers will spread partition replicas across as many different racks as possible.
When replicas are spread across multiple racks, the probability that multiple replicas will fail at the same time is lower than if they would be in the same rack.
Spreading replicas improves resiliency, and is important for availability and reliability.
To enable rack awareness in Kafka, add the rack
option to the .spec.kafka
section of the Kafka
custom resource as shown in the example below.
rack
configuration for KafkaapiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
# ...
Note
|
The rack in which brokers are running can change in some cases when the pods are deleted or restarted.
As a result, the replicas running in different racks might then share the same rack.
Use Cruise Control and the KafkaRebalance resource with the RackAwareGoal to make sure that replicas remain distributed across different racks.
|
When rack awareness is enabled in the Kafka
custom resource, Strimzi will automatically add the Kubernetes preferredDuringSchedulingIgnoredDuringExecution
affinity rule to distribute the Kafka brokers across the different racks.
However, the preferred rule does not guarantee that the brokers will be spread.
Depending on your exact Kubernetes and Kafka configurations, you should add additional affinity
rules or configure topologySpreadConstraints
for both ZooKeeper and Kafka to make sure the nodes are properly distributed accross as many racks as possible.
For more information see Configuring pod scheduling.
Rack awareness can also be used in consumers to fetch data from the closest replica. This is useful for reducing the load on your network when a Kafka cluster spans multiple datacenters and can also reduce costs when running Kafka in public clouds. However, it can lead to increased latency.
In order to be able to consume from the closest replica, rack awareness has to be configured in the Kafka cluster, and the RackAwareReplicaSelector
has to be enabled.
The replica selector plugin provides the logic that enables clients to consume from the nearest replica.
The default implementation uses LeaderSelector
to always select the leader replica for the client.
Specify RackAwareReplicaSelector
for the replica.selector.class
to switch from the default implementation.
rack
configuration with enabled replica-aware selectorapiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
config:
# ...
replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
# ...
In addition to the Kafka broker configuration, you also need to specify the client.rack
option in your consumers.
The client.rack
option should specify the rack ID in which the consumer is running.
RackAwareReplicaSelector
associates matching broker.rack
and client.rack
IDs, to find the nearest replica and consume from it.
If there are multiple replicas in the same rack, RackAwareReplicaSelector
always selects the most up-to-date replica.
If the rack ID is not specified, or if it cannot find a replica with the same rack ID, it will fall back to the leader replica.
You can also configure Kafka Connect, MirrorMaker 2.0 and Kafka Bridge so that connectors consume messages from the closest replicas.
You enable rack awareness in the KafkaConnect
, KafkaMirrorMaker2
, and KafkaBridge
custom resources.
The configuration does does not set affinity rules, but you can also configure affinity
or topologySpreadConstraints
.
For more information see Configuring pod scheduling.
When deploying Kafka Connect using Strimzi, you can use the rack
section in the KafkaConnect
custom resource to automatically configure the client.rack
option.
rack
configuration for Kafka ConnectapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
# ...
spec:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
# ...
When deploying MirrorMaker 2 using Strimzi, you can use the rack
section in the KafkaMirrorMaker2
custom resource to automatically configure the client.rack
option.
rack
configuration for MirrorMaker 2.0apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
# ...
spec:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
# ...
When deploying Kafka Bridge using Strimzi, you can use the rack
section in the KafkaBridge
custom resource to automatically configure the client.rack
option.
rack
configuration for Kafka BridgeapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
# ...
spec:
# ...
rack:
topologyKey: topology.kubernetes.io/zone
# ...
Rack
schema propertiesProperty | Description |
---|---|
topologyKey |
A key that matches labels assigned to the Kubernetes cluster nodes. The value of the label is used to set a broker’s |
string |
Probe
schema referenceUsed in: CruiseControlSpec
, EntityTopicOperatorSpec
, EntityUserOperatorSpec
, KafkaBridgeSpec
, KafkaClusterSpec
, KafkaConnectSpec
, KafkaExporterSpec
, KafkaMirrorMaker2Spec
, KafkaMirrorMakerSpec
, TlsSidecar
, ZookeeperClusterSpec
Property | Description |
---|---|
failureThreshold |
Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3. Minimum value is 1. |
integer |
|
initialDelaySeconds |
The initial delay before first the health is first checked. Default to 15 seconds. Minimum value is 0. |
integer |
|
periodSeconds |
How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. |
integer |
|
successThreshold |
Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to 1. Must be 1 for liveness. Minimum value is 1. |
integer |
|
timeoutSeconds |
The timeout for each attempted health check. Default to 5 seconds. Minimum value is 1. |
integer |
JvmOptions
schema referenceUsed in: CruiseControlSpec
, EntityTopicOperatorSpec
, EntityUserOperatorSpec
, KafkaBridgeSpec
, KafkaClusterSpec
, KafkaConnectSpec
, KafkaMirrorMaker2Spec
, KafkaMirrorMakerSpec
, ZookeeperClusterSpec
Property | Description |
---|---|
-XX |
A map of -XX options to the JVM. |
map |
|
-Xms |
-Xms option to to the JVM. |
string |
|
-Xmx |
-Xmx option to to the JVM. |
string |
|
gcLoggingEnabled |
Specifies whether the Garbage Collection logging is enabled. The default is false. |
boolean |
|
javaSystemProperties |
A map of additional system properties which will be passed using the |
|
SystemProperty
schema referenceUsed in: JvmOptions
Property | Description |
---|---|
name |
The system property name. |
string |
|
value |
The system property value. |
string |
KafkaJmxOptions
schema referenceConfigures JMX connection options.
Get JMX metrics from Kafka brokers, ZooKeeper nodes, Kafka Connect, and MirrorMaker 2.0. by connecting to port 9999.
Use the jmxOptions
property to configure a password-protected or an unprotected JMX port.
Using password protection prevents unauthorized pods from accessing the port.
You can then obtain metrics about the component.
For example, for each Kafka broker you can obtain bytes-per-second usage data from clients, or the request rate of the network of the broker.
To enable security for the JMX port, set the type
parameter in the authentication
field to password
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
jmxOptions:
authentication:
type: "password"
# ...
zookeeper:
# ...
jmxOptions:
authentication:
type: "password"
#...
You can then deploy a pod into a cluster and obtain JMX metrics using the headless service by specifying which broker you want to address.
For example, to get JMX metrics from broker 0 you specify:
"CLUSTER-NAME-kafka-0.CLUSTER-NAME-kafka-brokers"
CLUSTER-NAME-kafka-0
is name of the broker pod, and CLUSTER-NAME-kafka-brokers
is the name of the headless service to return the IPs of the broker pods.
If the JMX port is secured, you can get the username and password by referencing them from the JMX Secret in the deployment of your pod.
For an unprotected JMX port, use an empty object {}
to open the JMX port on the headless service.
You deploy a pod and obtain metrics in the same way as for the protected port, but in this case any pod can read from the JMX port.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
jmxOptions: {}
# ...
zookeeper:
# ...
jmxOptions: {}
# ...
For more information on the Kafka component metrics exposed using JMX, see the Apache Kafka documentation.
KafkaJmxOptions
schema propertiesProperty | Description |
---|---|
authentication |
Authentication configuration for connecting to the JMX port. The type depends on the value of the |
KafkaJmxAuthenticationPassword
schema referenceUsed in: KafkaJmxOptions
The type
property is a discriminator that distinguishes use of the KafkaJmxAuthenticationPassword
type from other subtypes which may be added in the future.
It must have the value password
for the type KafkaJmxAuthenticationPassword
.
Property | Description |
---|---|
type |
Must be |
string |
JmxPrometheusExporterMetrics
schema referenceUsed in: CruiseControlSpec
, KafkaClusterSpec
, KafkaConnectSpec
, KafkaMirrorMaker2Spec
, KafkaMirrorMakerSpec
, ZookeeperClusterSpec
The type
property is a discriminator that distinguishes use of the JmxPrometheusExporterMetrics
type from other subtypes which may be added in the future.
It must have the value jmxPrometheusExporter
for the type JmxPrometheusExporterMetrics
.
Property | Description |
---|---|
type |
Must be |
string |
|
valueFrom |
ConfigMap entry where the Prometheus JMX Exporter configuration is stored. For details of the structure of this configuration, see the Prometheus JMX Exporter. |
ExternalConfigurationReference
schema referenceUsed in: ExternalLogging
, JmxPrometheusExporterMetrics
Property | Description |
---|---|
configMapKeyRef |
Reference to the key in the ConfigMap containing the configuration. For more information, see the external documentation for core/v1 configmapkeyselector. |
InlineLogging
schema referenceUsed in: CruiseControlSpec
, EntityTopicOperatorSpec
, EntityUserOperatorSpec
, KafkaBridgeSpec
, KafkaClusterSpec
, KafkaConnectSpec
, KafkaMirrorMaker2Spec
, KafkaMirrorMakerSpec
, ZookeeperClusterSpec
The type
property is a discriminator that distinguishes use of the InlineLogging
type from ExternalLogging
.
It must have the value inline
for the type InlineLogging
.
Property | Description |
---|---|
type |
Must be |
string |
|
loggers |
A Map from logger name to logger level. |
map |
ExternalLogging
schema referenceUsed in: CruiseControlSpec
, EntityTopicOperatorSpec
, EntityUserOperatorSpec
, KafkaBridgeSpec
, KafkaClusterSpec
, KafkaConnectSpec
, KafkaMirrorMaker2Spec
, KafkaMirrorMakerSpec
, ZookeeperClusterSpec
The type
property is a discriminator that distinguishes use of the ExternalLogging
type from InlineLogging
.
It must have the value external
for the type ExternalLogging
.
Property | Description |
---|---|
type |
Must be |
string |
|
valueFrom |
|
KafkaClusterTemplate
schema referenceUsed in: KafkaClusterSpec
Property | Description |
---|---|
statefulset |
Template for Kafka |
pod |
Template for Kafka |
bootstrapService |
Template for Kafka bootstrap |
brokersService |
Template for Kafka broker |
externalBootstrapService |
Template for Kafka external bootstrap |
perPodService |
Template for Kafka per-pod |
externalBootstrapRoute |
Template for Kafka external bootstrap |
perPodRoute |
Template for Kafka per-pod |
externalBootstrapIngress |
Template for Kafka external bootstrap |
perPodIngress |
Template for Kafka per-pod |
persistentVolumeClaim |
Template for all Kafka |
podDisruptionBudget |
Template for Kafka |
kafkaContainer |
Template for the Kafka broker container. |
initContainer |
Template for the Kafka init container. |
clusterCaCert |
Template for Secret with Kafka Cluster certificate public key. |
serviceAccount |
Template for the Kafka service account. |
jmxSecret |
Template for Secret of the Kafka Cluster JMX authentication. |
clusterRoleBinding |
Template for the Kafka ClusterRoleBinding. |
podSet |
Template for Kafka |
StatefulSetTemplate
schema referenceUsed in: KafkaClusterTemplate
, ZookeeperClusterTemplate
Property | Description |
---|---|
metadata |
Metadata applied to the resource. |
podManagementPolicy |
PodManagementPolicy which will be used for this StatefulSet. Valid values are |
string (one of [OrderedReady, Parallel]) |
MetadataTemplate
schema referenceUsed in: BuildConfigTemplate
, DeploymentTemplate
, InternalServiceTemplate
, PodDisruptionBudgetTemplate
, PodTemplate
, ResourceTemplate
, StatefulSetTemplate
Labels
and Annotations
are used to identify and organize resources, and are configured in the metadata
property.
For example:
# ...
template:
pod:
metadata:
labels:
label1: value1
label2: value2
annotations:
annotation1: value1
annotation2: value2
# ...
The labels
and annotations
fields can contain any labels or annotations that do not contain the reserved string strimzi.io
.
Labels and annotations containing strimzi.io
are used internally by Strimzi and cannot be configured.
MetadataTemplate
schema propertiesProperty | Description |
---|---|
labels |
Labels added to the resource template. Can be applied to different resources such as |
map |
|
annotations |
Annotations added to the resource template. Can be applied to different resources such as |
map |
PodTemplate
schema referenceUsed in: CruiseControlTemplate
, EntityOperatorTemplate
, JmxTransTemplate
, KafkaBridgeTemplate
, KafkaClusterTemplate
, KafkaConnectTemplate
, KafkaExporterTemplate
, KafkaMirrorMakerTemplate
, ZookeeperClusterTemplate
Configures the template for Kafka pods.
PodTemplate
configuration# ...
template:
pod:
metadata:
labels:
label1: value1
annotations:
anno1: value1
imagePullSecrets:
- name: my-docker-credentials
securityContext:
runAsUser: 1000001
fsGroup: 0
terminationGracePeriodSeconds: 120
# ...
hostAliases
Use the hostAliases
property to a specify a list of hosts and IP addresses,
which are injected into the /etc/hosts
file of the pod.
This configuration is especially useful for Kafka Connect or MirrorMaker when a connection outside of the cluster is also requested by users.
hostAliases
configurationapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
#...
spec:
# ...
template:
pod:
hostAliases:
- ip: "192.168.1.86"
hostnames:
- "my-host-1"
- "my-host-2"
#...
PodTemplate
schema propertiesProperty | Description |
---|---|
metadata |
Metadata applied to the resource. |
imagePullSecrets |
List of references to secrets in the same namespace to use for pulling any of the images used by this Pod. When the |
LocalObjectReference array |
|
securityContext |
Configures pod-level security attributes and common container settings. For more information, see the external documentation for core/v1 podsecuritycontext. |
terminationGracePeriodSeconds |
The grace period is the duration in seconds after the processes running in the pod are sent a termination signal, and the time when the processes are forcibly halted with a kill signal. Set this value to longer than the expected cleanup time for your process. Value must be a non-negative integer. A zero value indicates delete immediately. You might need to increase the grace period for very large Kafka clusters, so that the Kafka brokers have enough time to transfer their work to another broker before they are terminated. Defaults to 30 seconds. |
integer |
|
affinity |
The pod’s affinity rules. For more information, see the external documentation for core/v1 affinity. |
tolerations |
The pod’s tolerations. For more information, see the external documentation for core/v1 toleration. |
Toleration array |
|
priorityClassName |
The name of the priority class used to assign priority to the pods. For more information about priority classes, see Pod Priority and Preemption. |
string |
|
schedulerName |
The name of the scheduler used to dispatch this |
string |
|
hostAliases |
The pod’s HostAliases. HostAliases is an optional list of hosts and IPs that will be injected into the Pod’s hosts file if specified. For more information, see the external documentation for core/v1 hostalias. |
HostAlias array |
|
tmpDirSizeLimit |
Defines the total amount (for example |
string |
|
enableServiceLinks |
Indicates whether information about services should be injected into Pod’s environment variables. |
boolean |
|
topologySpreadConstraints |
The pod’s topology spread constraints. For more information, see the external documentation for core/v1 topologyspreadconstraint. |
TopologySpreadConstraint array |
InternalServiceTemplate
schema referenceUsed in: CruiseControlTemplate
, KafkaBridgeTemplate
, KafkaClusterTemplate
, KafkaConnectTemplate
, ZookeeperClusterTemplate
Property | Description |
---|---|
metadata |
Metadata applied to the resource. |
ipFamilyPolicy |
Specifies the IP Family Policy used by the service. Available options are |
string (one of [RequireDualStack, SingleStack, PreferDualStack]) |
|
ipFamilies |
Specifies the IP Families used by the service. Available options are |
string (one or more of [IPv6, IPv4]) array |
ResourceTemplate
schema referenceUsed in: CruiseControlTemplate
, EntityOperatorTemplate
, JmxTransTemplate
, KafkaBridgeTemplate
, KafkaClusterTemplate
, KafkaConnectTemplate
, KafkaExporterTemplate
, KafkaMirrorMakerTemplate
, KafkaUserTemplate
, ZookeeperClusterTemplate
Property | Description |
---|---|
metadata |
Metadata applied to the resource. |
PodDisruptionBudgetTemplate
schema referenceUsed in: CruiseControlTemplate
, KafkaBridgeTemplate
, KafkaClusterTemplate
, KafkaConnectTemplate
, KafkaMirrorMakerTemplate
, ZookeeperClusterTemplate
Strimzi creates a PodDisruptionBudget
for every new StrimziPodSet
, StatefulSet
, or Deployment
.
By default, pod disruption budgets only allow a single pod to be unavailable at a given time.
You can increase the amount of unavailable pods allowed by changing the default value of the maxUnavailable
property.
PodDisruptionBudget
template# ...
template:
podDisruptionBudget:
metadata:
labels:
key1: label1
key2: label2
annotations:
key1: label1
key2: label2
maxUnavailable: 1
# ...
PodDisruptionBudgetTemplate
schema propertiesProperty | Description |
---|---|
metadata |
Metadata to apply to the |
maxUnavailable |
Maximum number of unavailable pods to allow automatic Pod eviction. A Pod eviction is allowed when the |
integer |
ContainerTemplate
schema referenceUsed in: CruiseControlTemplate
, EntityOperatorTemplate
, JmxTransTemplate
, KafkaBridgeTemplate
, KafkaClusterTemplate
, KafkaConnectTemplate
, KafkaExporterTemplate
, KafkaMirrorMakerTemplate
, ZookeeperClusterTemplate
You can set custom security context and environment variables for a container.
The environment variables are defined under the env
property as a list of objects with name
and value
fields.
The following example shows two custom environment variables and a custom security context set for the Kafka broker containers:
# ...
template:
kafkaContainer:
env:
- name: EXAMPLE_ENV_1
value: example.env.one
- name: EXAMPLE_ENV_2
value: example.env.two
securityContext:
runAsUser: 2000
# ...
Environment variables prefixed with KAFKA_
are internal to Strimzi and should be avoided.
If you set a custom environment variable that is already in use by Strimzi, it is ignored and a warning is recorded in the log.
ContainerTemplate
schema propertiesProperty | Description |
---|---|
env |
Environment variables which should be applied to the container. |
|
|
securityContext |
Security context for the container. For more information, see the external documentation for core/v1 securitycontext. |
ContainerEnvVar
schema referenceUsed in: ContainerTemplate
Property | Description |
---|---|
name |
The environment variable key. |
string |
|
value |
The environment variable value. |
string |
ZookeeperClusterSpec
schema referenceUsed in: KafkaSpec
Configures a ZooKeeper cluster.
config
Use the config
properties to configure ZooKeeper options as keys.
Standard Apache ZooKeeper configuration may be provided, restricted to those properties not managed directly by Strimzi.
Configuration options that cannot be configured relate to:
Security (Encryption, Authentication, and Authorization)
Listener configuration
Configuration of data directories
ZooKeeper cluster composition
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the ZooKeeper documentation with the exception of those managed directly by Strimzi. Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
server.
dataDir
dataLogDir
clientPort
authProvider
quorum.auth
requireClientAuthScheme
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other supported options are passed to ZooKeeper.
There are exceptions to the forbidden options.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
kafka:
# ...
zookeeper:
# ...
config:
autopurge.snapRetainCount: 3
autopurge.purgeInterval: 1
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
# ...
logging
ZooKeeper has a configurable logger:
zookeeper.root.logger
ZooKeeper uses the Apache log4j
logger implementation.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
# ...
zookeeper:
# ...
logging:
type: inline
loggers:
zookeeper.root.logger: "INFO"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
# ...
zookeeper:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: zookeeper-log4j.properties
# ...
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
ZookeeperClusterSpec
schema propertiesProperty | Description |
---|---|
replicas |
The number of pods in the cluster. |
integer |
|
image |
The docker image for the pods. |
string |
|
storage |
Storage configuration (disk). Cannot be updated. The type depends on the value of the |
config |
The ZooKeeper broker config. Properties with the following prefixes cannot be set: server., dataDir, dataLogDir, clientPort, authProvider, quorum.auth, requireClientAuthScheme, snapshot.trust.empty, standaloneEnabled, reconfigEnabled, 4lw.commands.whitelist, secureClientPort, ssl., serverCnxnFactory, sslQuorum (with the exception of: ssl.protocol, ssl.quorum.protocol, ssl.enabledProtocols, ssl.quorum.enabledProtocols, ssl.ciphersuites, ssl.quorum.ciphersuites, ssl.hostnameVerification, ssl.quorum.hostnameVerification). |
map |
|
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
jvmOptions |
JVM Options for pods. |
jmxOptions |
JMX Options for Zookeeper nodes. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
metricsConfig |
Metrics configuration. The type depends on the value of the |
logging |
Logging configuration for ZooKeeper. The type depends on the value of the |
template |
Template for ZooKeeper cluster resources. The template allows users to specify how the |
ZookeeperClusterTemplate
schema referenceUsed in: ZookeeperClusterSpec
Property | Description |
---|---|
statefulset |
Template for ZooKeeper |
pod |
Template for ZooKeeper |
clientService |
Template for ZooKeeper client |
nodesService |
Template for ZooKeeper nodes |
persistentVolumeClaim |
Template for all ZooKeeper |
podDisruptionBudget |
Template for ZooKeeper |
zookeeperContainer |
Template for the ZooKeeper container. |
serviceAccount |
Template for the ZooKeeper service account. |
jmxSecret |
Template for Secret of the Zookeeper Cluster JMX authentication. |
podSet |
Template for ZooKeeper |
EntityOperatorSpec
schema referenceUsed in: KafkaSpec
Property | Description |
---|---|
topicOperator |
Configuration of the Topic Operator. |
userOperator |
Configuration of the User Operator. |
tlsSidecar |
TLS sidecar configuration. |
template |
Template for Entity Operator resources. The template allows users to specify how a |
EntityTopicOperatorSpec
schema referenceUsed in: EntityOperatorSpec
Configures the Topic Operator.
logging
The Topic Operator has a configurable logger:
rootLogger.level
The Topic Operator uses the Apache log4j2
logger implementation.
Use the logging
property in the entityOperator.topicOperator
field of the Kafka resource Kafka
resource to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j2.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging:
type: inline
loggers:
rootLogger.level: INFO
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: topic-operator-log4j2.properties
# ...
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
EntityTopicOperatorSpec
schema propertiesProperty | Description |
---|---|
watchedNamespace |
The namespace the Topic Operator should watch. |
string |
|
image |
The image to use for the Topic Operator. |
string |
|
reconciliationIntervalSeconds |
Interval between periodic reconciliations. |
integer |
|
zookeeperSessionTimeoutSeconds |
Timeout for the ZooKeeper session. |
integer |
|
startupProbe |
Pod startup checking. |
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
topicMetadataMaxAttempts |
The number of attempts at getting topic metadata. |
integer |
|
logging |
Logging configuration. The type depends on the value of the |
jvmOptions |
JVM Options for pods. |
EntityUserOperatorSpec
schema referenceUsed in: EntityOperatorSpec
Configures the User Operator.
logging
The User Operator has a configurable logger:
rootLogger.level
The User Operator uses the Apache log4j2
logger implementation.
Use the logging
property in the entityOperator.userOperator
field of the Kafka
resource to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j2.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
userOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging:
type: inline
loggers:
rootLogger.level: INFO
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
# ...
zookeeper:
# ...
entityOperator:
# ...
userOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: user-operator-log4j2.properties
# ...
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
EntityUserOperatorSpec
schema propertiesProperty | Description |
---|---|
watchedNamespace |
The namespace the User Operator should watch. |
string |
|
image |
The image to use for the User Operator. |
string |
|
reconciliationIntervalSeconds |
Interval between periodic reconciliations. |
integer |
|
zookeeperSessionTimeoutSeconds |
The |
integer |
|
secretPrefix |
The prefix that will be added to the KafkaUser name to be used as the Secret name. |
string |
|
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
logging |
Logging configuration. The type depends on the value of the |
jvmOptions |
JVM Options for pods. |
TlsSidecar
schema referenceUsed in: CruiseControlSpec
, EntityOperatorSpec
Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In Strimzi, the TLS sidecar uses TLS to encrypt and decrypt communication between components and ZooKeeper.
The TLS sidecar is used in the Entity Operator.
The TLS sidecar is configured using the tlsSidecar
property in Kafka.spec.entityOperator
.
The TLS sidecar supports the following additional options:
image
resources
logLevel
readinessProbe
livenessProbe
The resources
property specifies the memory and CPU resources allocated for the TLS sidecar.
The image
property configures the container image which will be used.
The readinessProbe
and livenessProbe
properties configure healthcheck probes for the TLS sidecar.
The logLevel
property specifies the logging level.
The following logging levels are supported:
emerg
alert
crit
err
warning
notice
info
debug
The default value is notice.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
entityOperator:
# ...
tlsSidecar:
resources:
requests:
cpu: 200m
memory: 64Mi
limits:
cpu: 500m
memory: 128Mi
# ...
TlsSidecar
schema propertiesProperty | Description |
---|---|
image |
The docker image for the container. |
string |
|
livenessProbe |
Pod liveness checking. |
logLevel |
The log level for the TLS sidecar. Default value is |
string (one of [emerg, debug, crit, err, alert, warning, notice, info]) |
|
readinessProbe |
Pod readiness checking. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
EntityOperatorTemplate
schema referenceUsed in: EntityOperatorSpec
Property | Description |
---|---|
deployment |
Template for Entity Operator |
pod |
Template for Entity Operator |
topicOperatorContainer |
Template for the Entity Topic Operator container. |
userOperatorContainer |
Template for the Entity User Operator container. |
tlsSidecarContainer |
Template for the Entity Operator TLS sidecar container. |
serviceAccount |
Template for the Entity Operator service account. |
entityOperatorRole |
Template for the Entity Operator Role. |
topicOperatorRoleBinding |
Template for the Entity Topic Operator RoleBinding. |
userOperatorRoleBinding |
Template for the Entity Topic Operator RoleBinding. |
DeploymentTemplate
schema referenceUsed in: CruiseControlTemplate
, EntityOperatorTemplate
, JmxTransTemplate
, KafkaBridgeTemplate
, KafkaConnectTemplate
, KafkaExporterTemplate
, KafkaMirrorMakerTemplate
Use deploymentStrategy
to specify the strategy used to replace old pods with new ones when deployment configuration changes.
Use one of the following values:
RollingUpdate
: Pods are restarted with zero downtime.
Recreate
: Pods are terminated before new ones are created.
Using the Recreate
deployment strategy has the advantage of not requiring spare resources, but the disadvantage is the application downtime.
Recreate
.# ...
template:
deployment:
deploymentStrategy: Recreate
# ...
This configuration change does not cause a rolling update.
DeploymentTemplate
schema propertiesProperty | Description |
---|---|
metadata |
Metadata applied to the resource. |
deploymentStrategy |
Pod replacement strategy for deployment configuration changes. Valid values are |
string (one of [RollingUpdate, Recreate]) |
CertificateAuthority
schema referenceUsed in: KafkaSpec
Configuration of how TLS certificates are used within the cluster. This applies to certificates used for both internal communication within the cluster and to certificates used for client access via Kafka.spec.kafka.listeners.tls
.
Property | Description |
---|---|
generateCertificateAuthority |
If true then Certificate Authority certificates will be generated automatically. Otherwise the user will need to provide a Secret with the CA certificate. Default is true. |
boolean |
|
generateSecretOwnerReference |
If |
boolean |
|
validityDays |
The number of days generated certificates should be valid for. The default is 365. |
integer |
|
renewalDays |
The number of days in the certificate renewal period. This is the number of days before the a certificate expires during which renewal actions may be performed. When |
integer |
|
certificateExpirationPolicy |
How should CA certificate expiration be handled when |
string (one of [replace-key, renew-certificate]) |
CruiseControlSpec
schema referenceUsed in: KafkaSpec
Configures a Cruise Control cluster.
Configuration options relate to:
Goals configuration
Capacity limits for resource distribution goals
config
Use the config
properties to configure Cruise Control options as keys.
Standard Cruise Control configuration may be provided, restricted to those properties not managed directly by Strimzi.
Configuration options that cannot be configured relate to the following:
Security (Encryption, Authentication, and Authorization)
Connection to the Kafka cluster
Client ID configuration
ZooKeeper connectivity
Web server configuration
Self healing
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the Cruise Control documentation with the exception of those options that are managed directly by Strimzi.
See the description of the config
property for a list of forbidden prefixes.
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other supported options are passed to Cruise Control.
There are exceptions to the forbidden options.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure webserver
properties to enable Cross-Origin Resource Sharing (CORS).
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
cruiseControl:
# ...
config:
# Note that `default.goals` (superset) must also include all `hard.goals` (subset)
default.goals: >
com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
hard.goals: >
com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
cpu.balance.threshold: 1.1
metadata.max.age.ms: 300000
send.buffer.bytes: 131072
webserver.http.cors.enabled: true
webserver.http.cors.origin: "*"
webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
# ...
Cross-Origin Resource Sharing (CORS) is a HTTP mechanism for controlling access to REST APIs.
Restrictions can be on access methods or originating URLs of client applications.
You can enable CORS with Cruise Control using the webserver.http.cors.enabled
property in the config
.
When enabled, CORS permits read access to the Cruise Control REST API from applications that have different originating URLs than Strimzi.
This allows applications from specified origins to use GET
requests to fetch information about the Kafka cluster through the Cruise Control API.
For example, applications can fetch information on the current cluster load or the most recent optimization proposal.
POST
requests are not permitted.
Note
|
For more information on using CORS with Cruise Control, see REST APIs in the Cruise Control Wiki. |
You enable and configure CORS in Kafka.spec.cruiseControl.config
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
cruiseControl:
# ...
config:
webserver.http.cors.enabled: true # (1)
webserver.http.cors.origin: "*" # (2)
webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type" # (3)
# ...
Enables CORS.
Specifies permitted origins for the Access-Control-Allow-Origin
HTTP response header. You can use a wildcard or specify a single origin as a URL. If you use a wildcard, a response is returned following requests from any origin.
Exposes specified header names for the Access-Control-Expose-Headers
HTTP response header. Applications in permitted origins can read responses with the specified headers.
The Cruise Control REST API is secured with HTTP Basic authentication and SSL to protect the cluster against potentially destructive Cruise Control operations, such as decommissioning Kafka brokers. We recommend that Cruise Control in Strimzi is only used with these settings enabled.
However, it is possible to disable these settings by specifying the following Cruise Control configuration:
To disable the built-in HTTP Basic authentication, set webserver.security.enable
to false
.
To disable the built-in SSL, set webserver.ssl.enable
to false
.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
cruiseControl:
config:
webserver.security.enable: false
webserver.ssl.enable: false
# ...
Cruise Control uses capacity limits to determine if optimization goals for resource distribution are being broken. There are four goals of this type:
DiskUsageDistributionGoal
- Disk utilization distribution
CpuUsageDistributionGoal
- CPU utilization distribution
NetworkInboundUsageDistributionGoal
- Network inbound utilization distribution
NetworkOutboundUsageDistributionGoal
- Network outbound utilization distribution
You specify capacity limits for Kafka broker resources in the brokerCapacity
property in Kafka.spec.cruiseControl
.
They are enabled by default and you can change their default values.
Capacity limits can be set for the following broker resources:
cpu
- CPU resource in millicores or CPU cores (Default: 1)
inboundNetwork
- Inbound network throughput in byte units per second (Default: 10000KiB/s)
outboundNetwork
- Outbound network throughput in byte units per second (Default: 10000KiB/s)
For network throughput, use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second.
Note
|
Disk and CPU capacity limits are automatically generated by Strimzi, so you do not need to set them.
In order to guarantee accurate rebalance proposals when using CPU goals, you can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources .
That way, all CPU resources are reserved upfront and are always available.
This configuration allows Cruise Control to properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals.
In cases where you cannot set CPU requests equal to CPU limits in Kafka.spec.kafka.resources , you can set the CPU capacity manually for the same accuracy.
|
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
cruiseControl:
# ...
brokerCapacity:
cpu: "2"
inboundNetwork: 10000KiB/s
outboundNetwork: 10000KiB/s
# ...
Brokers might be running on nodes with heterogeneous network or CPU resources.
If that’s the case, specify overrides
that set the network capacity and CPU limits for each broker.
The overrides ensure an accurate rebalance between the brokers.
Override capacity limits can be set for the following broker resources:
cpu
- CPU resource in millicores or CPU cores (Default: 1)
inboundNetwork
- Inbound network throughput in byte units per second (Default: 10000KiB/s)
outboundNetwork
- Outbound network throughput in byte units per second (Default: 10000KiB/s)
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
name: my-cluster
spec:
# ...
cruiseControl:
# ...
brokerCapacity:
cpu: "1"
inboundNetwork: 10000KiB/s
outboundNetwork: 10000KiB/s
overrides:
- brokers: [0]
cpu: "2.755"
inboundNetwork: 20000KiB/s
outboundNetwork: 20000KiB/s
- brokers: [1, 2]
cpu: 3000m
inboundNetwork: 30000KiB/s
outboundNetwork: 30000KiB/s
For more information, refer to the BrokerCapacity schema reference.
Cruise Control has its own configurable logger:
rootLogger.level
Cruise Control uses the Apache log4j2
logger implementation.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
cruiseControl:
# ...
logging:
type: inline
loggers:
rootLogger.level: "INFO"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
# ...
spec:
cruiseControl:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: cruise-control-log4j.properties
# ...
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
CruiseControlSpec
schema propertiesProperty | Description |
---|---|
image |
The docker image for the pods. |
string |
|
tlsSidecar |
The |
resources |
CPU and memory resources to reserve for the Cruise Control container. For more information, see the external documentation for core/v1 resourcerequirements. |
livenessProbe |
Pod liveness checking for the Cruise Control container. |
readinessProbe |
Pod readiness checking for the Cruise Control container. |
jvmOptions |
JVM Options for the Cruise Control container. |
logging |
Logging configuration (Log4j 2) for Cruise Control. The type depends on the value of the |
template |
Template to specify how Cruise Control resources, |
brokerCapacity |
The Cruise Control |
config |
The Cruise Control configuration. For a full list of configuration options refer to https://github.com/linkedin/cruise-control/wiki/Configurations. Note that properties with the following prefixes cannot be set: bootstrap.servers, client.id, zookeeper., network., security., failed.brokers.zk.path,webserver.http., webserver.api.urlprefix, webserver.session.path, webserver.accesslog., two.step., request.reason.required,metric.reporter.sampler.bootstrap.servers, capacity.config.file, self.healing., ssl., kafka.broker.failure.detection.enable, topic.config.provider.class (with the exception of: ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols, webserver.http.cors.enabled, webserver.http.cors.origin, webserver.http.cors.exposeheaders, webserver.security.enable, webserver.ssl.enable). |
map |
|
metricsConfig |
Metrics configuration. The type depends on the value of the |
CruiseControlTemplate
schema referenceUsed in: CruiseControlSpec
Property | Description |
---|---|
deployment |
Template for Cruise Control |
pod |
Template for Cruise Control |
apiService |
Template for Cruise Control API |
podDisruptionBudget |
Template for Cruise Control |
cruiseControlContainer |
Template for the Cruise Control container. |
tlsSidecarContainer |
The |
serviceAccount |
Template for the Cruise Control service account. |
BrokerCapacity
schema referenceUsed in: CruiseControlSpec
Property | Description |
---|---|
disk |
The |
string |
|
cpuUtilization |
The |
integer |
|
cpu |
Broker capacity for CPU resource in cores or millicores. For example, 1, 1.500, 1500m. For more information on valid CPU resource units see https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu. |
string |
|
inboundNetwork |
Broker capacity for inbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s. |
string |
|
outboundNetwork |
Broker capacity for outbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s. |
string |
|
overrides |
Overrides for individual brokers. The |
|
BrokerCapacityOverride
schema referenceUsed in: BrokerCapacity
Property | Description |
---|---|
brokers |
List of Kafka brokers (broker identifiers). |
integer array |
|
cpu |
Broker capacity for CPU resource in cores or millicores. For example, 1, 1.500, 1500m. For more information on valid CPU resource units see https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu. |
string |
|
inboundNetwork |
Broker capacity for inbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s. |
string |
|
outboundNetwork |
Broker capacity for outbound network throughput in bytes per second. Use an integer value with standard Kubernetes byte units (K, M, G) or their bibyte (power of two) equivalents (Ki, Mi, Gi) per second. For example, 10000KiB/s. |
string |
JmxTransSpec
schema referenceUsed in: KafkaSpec
Property | Description |
---|---|
image |
The image to use for the JmxTrans. |
string |
|
outputDefinitions |
Defines the output hosts that will be referenced later on. For more information on these properties see, |
logLevel |
Sets the logging level of the JmxTrans deployment.For more information see, JmxTrans Logging Level. |
string |
|
kafkaQueries |
Queries to send to the Kafka brokers to define what data should be read from each broker. For more information on these properties see, |
|
|
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
template |
Template for JmxTrans resources. |
JmxTransOutputDefinitionTemplate
schema referenceUsed in: JmxTransSpec
Property | Description |
---|---|
outputType |
Template for setting the format of the data that will be pushed.For more information see JmxTrans OutputWriters. |
string |
|
host |
The DNS/hostname of the remote host that the data is pushed to. |
string |
|
port |
The port of the remote host that the data is pushed to. |
integer |
|
flushDelayInSeconds |
How many seconds the JmxTrans waits before pushing a new set of data out. |
integer |
|
typeNames |
Template for filtering data to be included in response to a wildcard query. For more information see JmxTrans queries. |
string array |
|
name |
Template for setting the name of the output definition. This is used to identify where to send the results of queries should be sent. |
string |
JmxTransQueryTemplate
schema referenceUsed in: JmxTransSpec
Property | Description |
---|---|
targetMBean |
If using wildcards instead of a specific MBean then the data is gathered from multiple MBeans. Otherwise if specifying an MBean then data is gathered from that specified MBean. |
string |
|
attributes |
Determine which attributes of the targeted MBean should be included. |
string array |
|
outputs |
List of the names of output definitions specified in the spec.kafka.jmxTrans.outputDefinitions that have defined where JMX metrics are pushed to, and in which data format. |
string array |
JmxTransTemplate
schema referenceUsed in: JmxTransSpec
Property | Description |
---|---|
deployment |
Template for JmxTrans |
pod |
Template for JmxTrans |
container |
Template for JmxTrans container. |
serviceAccount |
Template for the JmxTrans service account. |
KafkaExporterSpec
schema referenceUsed in: KafkaSpec
Property | Description |
---|---|
image |
The docker image for the pods. |
string |
|
groupRegex |
Regular expression to specify which consumer groups to collect. Default value is |
string |
|
topicRegex |
Regular expression to specify which topics to collect. Default value is |
string |
|
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
logging |
Only log messages with the given severity or above. Valid levels: [ |
string |
|
enableSaramaLogging |
Enable Sarama logging, a Go client library used by the Kafka Exporter. |
boolean |
|
template |
Customization of deployment templates and pods. |
livenessProbe |
Pod liveness check. |
readinessProbe |
Pod readiness check. |
KafkaExporterTemplate
schema referenceUsed in: KafkaExporterSpec
Property | Description |
---|---|
deployment |
Template for Kafka Exporter |
pod |
Template for Kafka Exporter |
service |
The |
container |
Template for the Kafka Exporter container. |
serviceAccount |
Template for the Kafka Exporter service account. |
KafkaStatus
schema referenceUsed in: Kafka
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
listeners |
Addresses of the internal and external listeners. |
|
|
clusterId |
Kafka cluster Id. |
string |
Condition
schema referenceUsed in: KafkaBridgeStatus
, KafkaConnectorStatus
, KafkaConnectStatus
, KafkaMirrorMaker2Status
, KafkaMirrorMakerStatus
, KafkaRebalanceStatus
, KafkaStatus
, KafkaTopicStatus
, KafkaUserStatus
Property | Description |
---|---|
type |
The unique identifier of a condition, used to distinguish between other conditions in the resource. |
string |
|
status |
The status of the condition, either True, False or Unknown. |
string |
|
lastTransitionTime |
Last time the condition of a type changed from one status to another. The required format is 'yyyy-MM-ddTHH:mm:ssZ', in the UTC time zone. |
string |
|
reason |
The reason for the condition’s last transition (a single word in CamelCase). |
string |
|
message |
Human-readable message indicating details about the condition’s last transition. |
string |
ListenerStatus
schema referenceUsed in: KafkaStatus
Property | Description |
---|---|
type |
The |
string |
|
name |
The name of the listener. |
string |
|
addresses |
A list of the addresses for this listener. |
|
|
bootstrapServers |
A comma-separated list of |
string |
|
certificates |
A list of TLS certificates which can be used to verify the identity of the server when connecting to the given listener. Set only for |
string array |
ListenerAddress
schema referenceUsed in: ListenerStatus
Property | Description |
---|---|
host |
The DNS name or IP address of the Kafka bootstrap service. |
string |
|
port |
The port of the Kafka bootstrap service. |
integer |
KafkaConnect
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka Connect cluster. |
status |
The status of the Kafka Connect cluster. |
KafkaConnectSpec
schema referenceUsed in: KafkaConnect
Configures a Kafka Connect cluster.
config
Use the config
properties to configure Kafka options as keys.
Standard Apache Kafka Connect configuration may be provided, restricted to those properties not managed directly by Strimzi.
Configuration options that cannot be configured relate to:
Kafka cluster bootstrap address
Security (Encryption, Authentication, and Authorization)
Listener / REST interface configuration
Plugin path configuration
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the Apache Kafka documentation with the exception of those options that are managed directly by Strimzi. Specifically, configuration options with keys equal to or starting with one of the following strings are forbidden:
ssl.
sasl.
security.
listeners
plugin.path
rest.
bootstrap.servers
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other options are passed to Kafka Connect.
Important
|
The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or might become unstable.
In this circumstance, fix the configuration in the KafkaConnect.spec.config object, then the Cluster Operator can roll out the new configuration to all Kafka Connect nodes.
|
Certain options have default values:
group.id
with default value connect-cluster
offset.storage.topic
with default value connect-cluster-offsets
config.storage.topic
with default value connect-cluster-configs
status.storage.topic
with default value connect-cluster-status
key.converter
with default value org.apache.kafka.connect.json.JsonConverter
value.converter
with default value org.apache.kafka.connect.json.JsonConverter
These options are automatically configured in case they are not present in the KafkaConnect.spec.config
properties.
There are exceptions to the forbidden options.
You can use three allowed ssl
configuration options for client connection using a specific cipher suite for a TLS version.
A cipher suite combines algorithms for secure connection and data transfer.
You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
config:
group.id: my-connect-cluster
offset.storage.topic: my-connect-cluster-offsets
config.storage.topic: my-connect-cluster-configs
status.storage.topic: my-connect-cluster-status
key.converter: org.apache.kafka.connect.json.JsonConverter
value.converter: org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable: true
value.converter.schemas.enable: true
config.storage.replication.factor: 3
offset.storage.replication.factor: 3
status.storage.replication.factor: 3
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS
# ...
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
logging
Kafka Connect has its own configurable loggers:
connect.root.logger.level
log4j.logger.org.reflections
Further loggers are added depending on the Kafka Connect plugins running.
Use a curl request to get a complete list of Kafka Connect loggers running from any Kafka broker pod:
curl -s http://<connect-cluster-name>-connect-api:8083/admin/loggers/
Kafka Connect uses the Apache log4j
logger implementation.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
# ...
logging:
type: inline
loggers:
connect.root.logger.level: "INFO"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: connect-logging.log4j
# ...
Any available loggers that are not configured have their level set to OFF
.
If Kafka Connect was deployed using the Cluster Operator, changes to Kafka Connect logging levels are applied dynamically.
If you use external logging, a rolling update is triggered when logging appenders are changed.
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
KafkaConnectSpec
schema propertiesProperty | Description |
---|---|
version |
The Kafka Connect version. Defaults to 3.4.0. Consult the user documentation to understand the process required to upgrade or downgrade the version. |
string |
|
replicas |
The number of pods in the Kafka Connect group. |
integer |
|
image |
The docker image for the pods. |
string |
|
bootstrapServers |
Bootstrap servers to connect to. This should be given as a comma separated list of <hostname>:_<port>_ pairs. |
string |
|
tls |
TLS configuration. |
authentication |
Authentication configuration for Kafka Connect. The type depends on the value of the |
|
|
config |
The Kafka Connect configuration. Properties with the following prefixes cannot be set: ssl., sasl., security., listeners, plugin.path, rest., bootstrap.servers, consumer.interceptor.classes, producer.interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
|
resources |
The maximum limits for CPU and memory resources and the requested initial resources. For more information, see the external documentation for core/v1 resourcerequirements. |
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
jvmOptions |
JVM Options for pods. |
jmxOptions |
JMX Options. |
logging |
Logging configuration for Kafka Connect. The type depends on the value of the |
clientRackInitImage |
The image of the init container used for initializing the |
string |
|
rack |
Configuration of the node label which will be used as the |
tracing |
The configuration of tracing in Kafka Connect. The type depends on the value of the |
template |
Template for Kafka Connect and Kafka Mirror Maker 2 resources. The template allows users to specify how the |
externalConfiguration |
Pass data from Secrets or ConfigMaps to the Kafka Connect pods and use them to configure connectors. |
build |
Configures how the Connect container image should be built. Optional. |
metricsConfig |
Metrics configuration. The type depends on the value of the |
ClientTls
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
Configures TLS trusted certificates for connecting KafkaConnect, KafkaBridge, KafkaMirror, KafkaMirrorMaker2 to the cluster.
trustedCertificates
Provide a list of secrets using the trustedCertificates
property.
ClientTls
schema propertiesProperty | Description |
---|---|
trustedCertificates |
Trusted certificates for TLS connection. |
|
KafkaClientAuthenticationTls
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
To configure mTLS authentication, set the type
property to the value tls
.
mTLS uses a TLS certificate to authenticate.
certificateAndKey
The certificate is specified in the certificateAndKey
property and is always loaded from a Kubernetes secret.
In the secret, the certificate must be stored in X509 format under two different keys: public and private.
You can use the secrets created by the User Operator,
or you can create your own TLS certificate file, with the keys used for authentication, then create a Secret
from the file:
kubectl create secret generic MY-SECRET \
--from-file=MY-PUBLIC-TLS-CERTIFICATE-FILE.crt \
--from-file=MY-PRIVATE.key
Note
|
mTLS authentication can only be used with TLS connections. |
authentication:
type: tls
certificateAndKey:
secretName: my-secret
certificate: my-public-tls-certificate-file.crt
key: private.key
KafkaClientAuthenticationTls
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaClientAuthenticationTls
type from KafkaClientAuthenticationScramSha256
, KafkaClientAuthenticationScramSha512
, KafkaClientAuthenticationPlain
, KafkaClientAuthenticationOAuth
.
It must have the value tls
for the type KafkaClientAuthenticationTls
.
Property | Description |
---|---|
certificateAndKey |
Reference to the |
type |
Must be |
string |
KafkaClientAuthenticationScramSha256
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
To configure SASL-based SCRAM-SHA-256 authentication, set the type
property to scram-sha-256
.
The SCRAM-SHA-256 authentication mechanism requires a username and password.
username
Specify the username in the username
property.
passwordSecret
In the passwordSecret
property, specify a link to a Secret
containing the password.
You can use the secrets created by the User Operator.
If required, you can create a text file that contains the password, in cleartext, to use for authentication:
echo -n PASSWORD > MY-PASSWORD.txt
You can then create a Secret
from the text file, setting your own field name (key) for the password:
kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
apiVersion: v1
kind: Secret
metadata:
name: my-connect-secret-name
type: Opaque
data:
my-connect-password-field: LFTIyFRFlMmU2N2Tm
The secretName
property contains the name of the Secret
, and the password
property contains the name of the key under which the password is stored inside the Secret
.
Important
|
Do not specify the actual password in the password property.
|
authentication:
type: scram-sha-256
username: my-connect-username
passwordSecret:
secretName: my-connect-secret-name
password: my-connect-password-field
KafkaClientAuthenticationScramSha256
schema propertiesProperty | Description |
---|---|
passwordSecret |
Reference to the |
type |
Must be |
string |
|
username |
Username used for the authentication. |
string |
PasswordSecretSource
schema referenceUsed in: KafkaClientAuthenticationOAuth
, KafkaClientAuthenticationPlain
, KafkaClientAuthenticationScramSha256
, KafkaClientAuthenticationScramSha512
Property | Description |
---|---|
password |
The name of the key in the Secret under which the password is stored. |
string |
|
secretName |
The name of the Secret containing the password. |
string |
KafkaClientAuthenticationScramSha512
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
To configure SASL-based SCRAM-SHA-512 authentication, set the type
property to scram-sha-512
.
The SCRAM-SHA-512 authentication mechanism requires a username and password.
username
Specify the username in the username
property.
passwordSecret
In the passwordSecret
property, specify a link to a Secret
containing the password.
You can use the secrets created by the User Operator.
If required, you can create a text file that contains the password, in cleartext, to use for authentication:
echo -n PASSWORD > MY-PASSWORD.txt
You can then create a Secret
from the text file, setting your own field name (key) for the password:
kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
apiVersion: v1
kind: Secret
metadata:
name: my-connect-secret-name
type: Opaque
data:
my-connect-password-field: LFTIyFRFlMmU2N2Tm
The secretName
property contains the name of the Secret
, and the password
property contains the name of the key under which the password is stored inside the Secret
.
Important
|
Do not specify the actual password in the password property.
|
authentication:
type: scram-sha-512
username: my-connect-username
passwordSecret:
secretName: my-connect-secret-name
password: my-connect-password-field
KafkaClientAuthenticationScramSha512
schema propertiesProperty | Description |
---|---|
passwordSecret |
Reference to the |
type |
Must be |
string |
|
username |
Username used for the authentication. |
string |
KafkaClientAuthenticationPlain
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
To configure SASL-based PLAIN authentication, set the type
property to plain
.
SASL PLAIN authentication mechanism requires a username and password.
Warning
|
The SASL PLAIN mechanism will transfer the username and password across the network in cleartext. Only use SASL PLAIN authentication if TLS encryption is enabled. |
username
Specify the username in the username
property.
passwordSecret
In the passwordSecret
property, specify a link to a Secret
containing the password.
You can use the secrets created by the User Operator.
If required, create a text file that contains the password, in cleartext, to use for authentication:
echo -n PASSWORD > MY-PASSWORD.txt
You can then create a Secret
from the text file, setting your own field name (key) for the password:
kubectl create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-NAME=./MY-PASSWORD.txt
apiVersion: v1
kind: Secret
metadata:
name: my-connect-secret-name
type: Opaque
data:
my-password-field-name: LFTIyFRFlMmU2N2Tm
The secretName
property contains the name of the Secret
and the password
property contains the name of the key under which the password is stored inside the Secret
.
Important
|
Do not specify the actual password in the password property.
|
authentication:
type: plain
username: my-connect-username
passwordSecret:
secretName: my-connect-secret-name
password: my-password-field-name
KafkaClientAuthenticationPlain
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaClientAuthenticationPlain
type from KafkaClientAuthenticationTls
, KafkaClientAuthenticationScramSha256
, KafkaClientAuthenticationScramSha512
, KafkaClientAuthenticationOAuth
.
It must have the value plain
for the type KafkaClientAuthenticationPlain
.
Property | Description |
---|---|
passwordSecret |
Reference to the |
type |
Must be |
string |
|
username |
Username used for the authentication. |
string |
KafkaClientAuthenticationOAuth
schema referenceUsed in: KafkaBridgeSpec
, KafkaConnectSpec
, KafkaMirrorMaker2ClusterSpec
, KafkaMirrorMakerConsumerSpec
, KafkaMirrorMakerProducerSpec
To configure OAuth client authentication, set the type
property to oauth
.
OAuth authentication can be configured using one of the following options:
Client ID and secret
Client ID and refresh token
Access token
Username and password
TLS
You can configure the address of your authorization server in the tokenEndpointUri
property together with the client ID and client secret used in authentication.
The OAuth client will connect to the OAuth server, authenticate using the client ID and secret and get an access token which it will use to authenticate with the Kafka broker.
In the clientSecret
property, specify a link to a Secret
containing the client secret.
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
clientId: my-client-id
clientSecret:
secretName: my-client-oauth-secret
key: client-secret
Optionally, scope
and audience
can be specified if needed.
You can configure the address of your OAuth server in the tokenEndpointUri
property together with the OAuth client ID and refresh token.
The OAuth client will connect to the OAuth server, authenticate using the client ID and refresh token and get an access token which it will use to authenticate with the Kafka broker.
In the refreshToken
property, specify a link to a Secret
containing the refresh token.
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
clientId: my-client-id
refreshToken:
secretName: my-refresh-token-secret
key: refresh-token
You can configure the access token used for authentication with the Kafka broker directly.
In this case, you do not specify the tokenEndpointUri
.
In the accessToken
property, specify a link to a Secret
containing the access token.
authentication:
type: oauth
accessToken:
secretName: my-access-token-secret
key: access-token
OAuth username and password configuration uses the OAuth Resource Owner Password Grant mechanism. The mechanism is deprecated, and is only supported to enable integration in environments where client credentials (ID and secret) cannot be used. You might need to use user accounts if your access management system does not support another approach or user accounts are required for authentication.
A typical approach is to create a special user account in your authorization server that represents your client application. You then give the account a long randomly generated password and a very limited set of permissions. For example, the account can only connect to your Kafka cluster, but is not allowed to use any other services or login to the user interface.
Consider using a refresh token mechanism first.
You can configure the address of your authorization server in the tokenEndpointUri
property together with the client ID, username and the password used in authentication.
The OAuth client will connect to the OAuth server, authenticate using the username, the password, the client ID, and optionally even the client secret to obtain an access token which it will use to authenticate with the Kafka broker.
In the passwordSecret
property, specify a link to a Secret
containing the password.
Normally, you also have to configure a clientId
using a public OAuth client.
If you are using a confidential OAuth client, you also have to configure a clientSecret
.
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
username: my-username
passwordSecret:
secretName: my-password-secret-name
password: my-password-field-name
clientId: my-public-client-id
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
username: my-username
passwordSecret:
secretName: my-password-secret-name
password: my-password-field-name
clientId: my-confidential-client-id
clientSecret:
secretName: my-confidential-client-oauth-secret
key: client-secret
Optionally, scope
and audience
can be specified if needed.
Accessing the OAuth server using the HTTPS protocol does not require any additional configuration as long as the TLS certificates used by it are signed by a trusted certification authority and its hostname is listed in the certificate.
If your OAuth server is using certificates which are self-signed or are signed by a certification authority which is not trusted, you can configure a list of trusted certificates in the custom resource.
The tlsTrustedCertificates
property contains a list of secrets with key names under which the certificates are stored.
The certificates must be stored in X509 format.
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
clientId: my-client-id
refreshToken:
secretName: my-refresh-token-secret
key: refresh-token
tlsTrustedCertificates:
- secretName: oauth-server-ca
certificate: tls.crt
The OAuth client will by default verify that the hostname of your OAuth server matches either the certificate subject or one of the alternative DNS names. If it is not required, you can disable the hostname verification.
authentication:
type: oauth
tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
clientId: my-client-id
refreshToken:
secretName: my-refresh-token-secret
key: refresh-token
disableTlsHostnameVerification: true
KafkaClientAuthenticationOAuth
schema propertiesThe type
property is a discriminator that distinguishes use of the KafkaClientAuthenticationOAuth
type from KafkaClientAuthenticationTls
, KafkaClientAuthenticationScramSha256
, KafkaClientAuthenticationScramSha512
, KafkaClientAuthenticationPlain
.
It must have the value oauth
for the type KafkaClientAuthenticationOAuth
.
Property | Description |
---|---|
accessToken |
Link to Kubernetes Secret containing the access token which was obtained from the authorization server. |
accessTokenIsJwt |
Configure whether access token should be treated as JWT. This should be set to |
boolean |
|
audience |
OAuth audience to use when authenticating against the authorization server. Some authorization servers require the audience to be explicitly set. The possible values depend on how the authorization server is configured. By default, |
string |
|
clientId |
OAuth Client ID which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI. |
string |
|
clientSecret |
Link to Kubernetes Secret containing the OAuth client secret which the Kafka client can use to authenticate against the OAuth server and use the token endpoint URI. |
connectTimeoutSeconds |
The connect timeout in seconds when connecting to authorization server. If not set, the effective connect timeout is 60 seconds. |
integer |
|
disableTlsHostnameVerification |
Enable or disable TLS hostname verification. Default value is |
boolean |
|
enableMetrics |
Enable or disable OAuth metrics. Default value is |
boolean |
|
httpRetries |
The maximum number of retries to attempt if an initial HTTP request fails. If not set, the default is to not attempt any retries. |
integer |
|
httpRetryPauseMs |
The pause to take before retrying a failed HTTP request. If not set, the default is to not pause at all but to immediately repeat a request. |
integer |
|
maxTokenExpirySeconds |
Set or limit time-to-live of the access tokens to the specified number of seconds. This should be set if the authorization server returns opaque tokens. |
integer |
|
passwordSecret |
Reference to the |
readTimeoutSeconds |
The read timeout in seconds when connecting to authorization server. If not set, the effective read timeout is 60 seconds. |
integer |
|
refreshToken |
Link to Kubernetes Secret containing the refresh token which can be used to obtain access token from the authorization server. |
scope |
OAuth scope to use when authenticating against the authorization server. Some authorization servers require this to be set. The possible values depend on how authorization server is configured. By default |
string |
|
tlsTrustedCertificates |
Trusted certificates for TLS connection to the OAuth server. |
|
|
tokenEndpointUri |
Authorization server token endpoint URI. |
string |
|
type |
Must be |
string |
|
username |
Username used for the authentication. |
string |
JaegerTracing
schema referenceThe type JaegerTracing
has been deprecated.
The type
property is a discriminator that distinguishes use of the JaegerTracing
type from OpenTelemetryTracing
.
It must have the value jaeger
for the type JaegerTracing
.
Property | Description |
---|---|
type |
Must be |
string |
OpenTelemetryTracing
schema referenceThe type
property is a discriminator that distinguishes use of the OpenTelemetryTracing
type from JaegerTracing
.
It must have the value opentelemetry
for the type OpenTelemetryTracing
.
Property | Description |
---|---|
type |
Must be |
string |
KafkaConnectTemplate
schema referenceUsed in: KafkaConnectSpec
, KafkaMirrorMaker2Spec
Property | Description |
---|---|
deployment |
Template for Kafka Connect |
podSet |
Template for Kafka Connect |
pod |
Template for Kafka Connect |
apiService |
Template for Kafka Connect API |
headlessService |
Template for Kafka Connect headless |
connectContainer |
Template for the Kafka Connect container. |
initContainer |
Template for the Kafka init container. |
podDisruptionBudget |
Template for Kafka Connect |
serviceAccount |
Template for the Kafka Connect service account. |
clusterRoleBinding |
Template for the Kafka Connect ClusterRoleBinding. |
buildPod |
Template for Kafka Connect Build |
buildContainer |
Template for the Kafka Connect Build container. The build container is used only on Kubernetes. |
buildConfig |
Template for the Kafka Connect BuildConfig used to build new container images. The BuildConfig is used only on OpenShift. |
buildServiceAccount |
Template for the Kafka Connect Build service account. |
jmxSecret |
Template for Secret of the Kafka Connect Cluster JMX authentication. |
BuildConfigTemplate
schema referenceUsed in: KafkaConnectTemplate
Property | Description |
---|---|
metadata |
Metadata to apply to the |
pullSecret |
Container Registry Secret with the credentials for pulling the base image. |
string |
ExternalConfiguration
schema referenceUsed in: KafkaConnectSpec
, KafkaMirrorMaker2Spec
Configures external storage properties that define configuration options for Kafka Connect connectors.
You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes.
Volumes and environment variables are configured in the externalConfiguration
property in KafkaConnect.spec
.
When applied, the environment variables and volumes are available for use when developing your connectors.
env
Use the env
property to specify one or more environment variables.
These variables can contain a value from either a ConfigMap or a Secret.
apiVersion: v1
kind: Secret
metadata:
name: aws-creds
type: Opaque
data:
awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=
Note
|
The names of user-defined environment variables cannot start with KAFKA_ or STRIMZI_ .
|
To mount a value from a Secret to an environment variable, use the valueFrom
property and the secretKeyRef
.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
externalConfiguration:
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey
A common use case for mounting Secrets is for a connector to communicate with Amazon AWS.
The connector needs to be able to read the AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
.
To mount a value from a ConfigMap to an environment variable, use configMapKeyRef
in the valueFrom
property as shown in the following example.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
externalConfiguration:
env:
- name: MY_ENVIRONMENT_VARIABLE
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
volumes
Use volumes to mount ConfigMaps or Secrets to a Kafka Connect pod.
Using volumes instead of environment variables is useful in the following scenarios:
Mounting a properties file that is used to configure Kafka Connect connectors
Mounting truststores or keystores with TLS certificates
Volumes are mounted inside the Kafka Connect containers on the path /opt/kafka/external-configuration/<volume-name>
.
For example, the files from a volume named connector-config
will appear in the directory /opt/kafka/external-configuration/connector-config
.
Configuration providers load values from outside the configuration. Use a provider mechanism to avoid passing restricted information over the Kafka Connect REST interface.
FileConfigProvider
loads configuration values from properties in a file.
DirectoryConfigProvider
loads configuration values from separate files within a directory structure.
Use a comma-separated list if you want to add more than one provider, including custom providers. You can use custom providers to load values from other file locations.
FileConfigProvider
to load property valuesIn this example, a Secret named mysecret
contains connector properties that specify a database name and password:
apiVersion: v1
kind: Secret
metadata:
name: mysecret
type: Opaque
stringData:
connector.properties: |- (1)
dbUsername: my-username (2)
dbPassword: my-password
The connector configuration in properties file format.
Database username and password properties used in the configuration.
The Secret and the FileConfigProvider
configuration provider are specified in the Kafka Connect configuration.
The Secret is mounted to a volume named connector-config
.
FileConfigProvider
is given the alias file
.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
config:
config.providers: file (1)
config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider (2)
#...
externalConfiguration:
volumes:
- name: connector-config (3)
secret:
secretName: mysecret (4)
The alias for the configuration provider is used to define other configuration parameters.
FileConfigProvider
provides values from properties files.
The parameter uses the alias from config.providers
, taking the form config.providers.${alias}.class
.
The name of the volume containing the Secret. Each volume must specify a name in the name
property and a reference to a ConfigMap or Secret.
The name of the Secret.
Placeholders for the property values in the Secret are referenced in the connector configuration.
The placeholder structure is file:PATH-AND-FILE-NAME:PROPERTY
.
FileConfigProvider
reads and extracts the database username and password property values from the mounted Secret in connector configurations.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: my-source-connector
labels:
strimzi.io/cluster: my-connect-cluster
spec:
class: io.debezium.connector.mysql.MySqlConnector
tasksMax: 2
config:
database.hostname: 192.168.99.1
database.port: "3306"
database.user: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbUsername}"
database.password: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbPassword}"
database.server.id: "184054"
#...
DirectoryConfigProvider
to load property values from separate filesIn this example, a Secret
contains TLS truststore and keystore user credentials in separate files.
apiVersion: v1
kind: Secret
metadata:
name: my-user
labels:
strimzi.io/kind: KafkaUser
strimzi.io/cluster: my-cluster
type: Opaque
data:
ca.crt: <public_key> # Public key of the clients CA
user.crt: <user_certificate> # Public key of the user
user.key: <user_private_key> # Private key of the user
user.p12: <store> # PKCS #12 store for user certificates and keys
user.password: <password_for_store> # Protects the PKCS #12 store
The Secret and the DirectoryConfigProvider
configuration provider are specified in the Kafka Connect configuration.
The Secret is mounted to a volume named connector-config
.
DirectoryConfigProvider
is given the alias directory
.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
# ...
config:
config.providers: directory
config.providers.directory.class: org.apache.kafka.common.config.provider.DirectoryConfigProvider (1)
#...
externalConfiguration:
volumes:
- name: cluster-ca
secret:
secretName: my-cluster-cluster-ca-cert
- name: my-user
secret:
secretName: my-user
The DirectoryConfigProvider
provides values from files in a directory. The parameter uses the alias from config.providers
, taking the form config.providers.${alias}.class
.
Placeholders for the credentials are referenced in the connector configuration.
The placeholder structure is directory:PATH:FILE-NAME
.
DirectoryConfigProvider
reads and extracts the credentials from the mounted Secret in connector configurations.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: my-source-connector
labels:
strimzi.io/cluster: my-connect-cluster
spec:
class: io.debezium.connector.mysql.MySqlConnector
tasksMax: 2
config:
# ...
database.history.producer.security.protocol: SSL
database.history.producer.ssl.truststore.type: PEM
database.history.producer.ssl.truststore.certificates: "${directory:/opt/kafka/external-configuration/cluster-ca:ca.crt}"
database.history.producer.ssl.keystore.type: PEM
database.history.producer.ssl.keystore.certificate.chain: "${directory:/opt/kafka/external-configuration/my-user:user.crt}"
database.history.producer.ssl.keystore.key: "${directory:/opt/kafka/external-configuration/my-user:user.key}"
#...
ExternalConfiguration
schema propertiesProperty | Description |
---|---|
env |
Makes data from a Secret or ConfigMap available in the Kafka Connect pods as environment variables. |
|
|
volumes |
Makes data from a Secret or ConfigMap available in the Kafka Connect pods as volumes. |
ExternalConfigurationEnv
schema referenceUsed in: ExternalConfiguration
Property | Description |
---|---|
name |
Name of the environment variable which will be passed to the Kafka Connect pods. The name of the environment variable cannot start with |
string |
|
valueFrom |
Value of the environment variable which will be passed to the Kafka Connect pods. It can be passed either as a reference to Secret or ConfigMap field. The field has to specify exactly one Secret or ConfigMap. |
ExternalConfigurationEnvVarSource
schema referenceUsed in: ExternalConfigurationEnv
Property | Description |
---|---|
configMapKeyRef |
Reference to a key in a ConfigMap. For more information, see the external documentation for core/v1 configmapkeyselector. |
secretKeyRef |
Reference to a key in a Secret. For more information, see the external documentation for core/v1 secretkeyselector. |
ExternalConfigurationVolumeSource
schema referenceUsed in: ExternalConfiguration
Property | Description |
---|---|
configMap |
Reference to a key in a ConfigMap. Exactly one Secret or ConfigMap has to be specified. For more information, see the external documentation for core/v1 configmapvolumesource. |
name |
Name of the volume which will be added to the Kafka Connect pods. |
string |
|
secret |
Reference to a key in a Secret. Exactly one Secret or ConfigMap has to be specified. For more information, see the external documentation for core/v1 secretvolumesource. |
Build
schema referenceUsed in: KafkaConnectSpec
Configures additional connectors for Kafka Connect deployments.
output
To build new container images with additional connector plugins, Strimzi requires a container registry where the images can be pushed to, stored, and pulled from.
Strimzi does not run its own container registry, so a registry must be provided.
Strimzi supports private container registries as well as public registries such as Quay or Docker Hub.
The container registry is configured in the .spec.build.output
section of the KafkaConnect
custom resource.
The output
configuration, which is required, supports two types: docker
and imagestream
.
To use a Docker registry, you have to specify the type
as docker
, and the image
field with the full name of the new container image.
The full name must include:
The address of the registry
Port number (if listening on a non-standard port)
The tag of the new container image
Example valid container image names:
docker.io/my-org/my-image/my-tag
quay.io/my-org/my-image/my-tag
image-registry.image-registry.svc:5000/myproject/kafka-connect-build:latest
Each Kafka Connect deployment must use a separate image, which can mean different tags at the most basic level.
If the registry requires authentication, use the pushSecret
to set a name of the Secret with the registry credentials.
For the Secret, use the kubernetes.io/dockerconfigjson
type and a .dockerconfigjson
file to contain the Docker credentials.
For more information on pulling an image from a private registry, see Create a Secret based on existing Docker credentials.
output
configurationapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
type: docker (1)
image: my-registry.io/my-org/my-connect-cluster:latest (2)
pushSecret: my-registry-credentials (3)
#...
(Required) Type of output used by Strimzi.
(Required) Full name of the image used, including the repository and tag.
(Optional) Name of the secret with the container registry credentials.
Instead of Docker, you can use OpenShift ImageStream to store a new container image.
The ImageStream has to be created manually before deploying Kafka Connect.
To use ImageStream, set the type
to imagestream
, and use the image
property to specify the name of the ImageStream and the tag used.
For example, my-connect-image-stream:latest
.
output
configurationapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
type: imagestream # (1)
image: my-connect-build:latest # (2)
#...
(Required) Type of output used by Strimzi.
(Required) Name of the ImageStream and tag.
plugins
Connector plugins are a set of files that define the implementation required to connect to certain types of external system.
The connector plugins required for a container image must be configured using the .spec.build.plugins
property of the KafkaConnect
custom resource.
Each connector plugin must have a name which is unique within the Kafka Connect deployment.
Additionally, the plugin artifacts must be listed.
These artifacts are downloaded by Strimzi, added to the new container image, and used in the Kafka Connect deployment.
The connector plugin artifacts can also include additional components, such as (de)serializers.
Each connector plugin is downloaded into a separate directory so that the different connectors and their dependencies are properly sandboxed.
Each plugin must be configured with at least one artifact
.
plugins
configuration with two connector pluginsapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
#...
plugins: (1)
- name: debezium-postgres-connector
artifacts:
- type: tgz
url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-postgres/2.1.1.Final/debezium-connector-postgres-2.1.1.Final-plugin.tar.gz
sha512sum: 962a12151bdf9a5a30627eebac739955a4fd95a08d373b86bdcea2b4d0c27dd6e1edd5cb548045e115e33a9e69b1b2a352bee24df035a0447cb820077af00c03
- name: camel-telegram
artifacts:
- type: tgz
url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-telegram-kafka-connector/0.9.0/camel-telegram-kafka-connector-0.9.0-package.tar.gz
sha512sum: a9b1ac63e3284bea7836d7d24d84208c49cdf5600070e6bd1535de654f6920b74ad950d51733e8020bf4187870699819f54ef5859c7846ee4081507f48873479
#...
(Required) List of connector plugins and their artifacts.
Strimzi supports the following types of artifacts:
JAR files, which are downloaded and used directly
TGZ archives, which are downloaded and unpacked
ZIP archives, which are downloaded and unpacked
Maven artifacts, which uses Maven coordinates
Other artifacts, which are downloaded and used directly
Important
|
Strimzi does not perform any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually, and configure the checksum verification to make sure the same artifact is used in the automated build and in the Kafka Connect deployment. |
JAR artifacts represent a JAR file that is downloaded and added to a container image.
To use a JAR artifacts, set the type
property to jar
, and specify the download location using the url
property.
Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum of the artifact while building the new container image.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
#...
plugins:
- name: my-plugin
artifacts:
- type: jar (1)
url: https://my-domain.tld/my-jar.jar (2)
sha512sum: 589...ab4 (3)
- type: jar
url: https://my-domain.tld/my-jar2.jar
#...
(Required) Type of artifact.
(Required) URL from which the artifact is downloaded.
(Optional) SHA-512 checksum to verify the artifact.
TGZ artifacts are used to download TAR archives that have been compressed using Gzip compression.
The TGZ artifact can contain the whole Kafka Connect connector, even when comprising multiple different files.
The TGZ artifact is automatically downloaded and unpacked by Strimzi while building the new container image.
To use TGZ artifacts, set the type
property to tgz
, and specify the download location using the url
property.
Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum before unpacking it and building the new container image.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
#...
plugins:
- name: my-plugin
artifacts:
- type: tgz (1)
url: https://my-domain.tld/my-connector-archive.tgz (2)
sha512sum: 158...jg10 (3)
#...
(Required) Type of artifact.
(Required) URL from which the archive is downloaded.
(Optional) SHA-512 checksum to verify the artifact.
ZIP artifacts are used to download ZIP compressed archives.
Use ZIP artifacts in the same way as the TGZ artifacts described in the previous section.
The only difference is you specify type: zip
instead of type: tgz
.
maven
artifacts are used to specify connector plugin artifacts as Maven coordinates.
The Maven coordinates identify plugin artifacts and dependencies so that they can be located and fetched from a Maven repository.
Note
|
The Maven repository must be accessible for the connector build process to add the artifacts to the container image. |
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
#...
plugins:
- name: my-plugin
artifacts:
- type: maven (1)
repository: https://mvnrepository.com (2)
group: org.apache.camel.kafkaconnector (3)
artifact: camel-kafka-connector (4)
version: 0.11.0 (5)
#...
(Required) Type of artifact.
(Optional) Maven repository to download the artifacts from. If you do not specify a repository, Maven Central repository is used by default.
(Required) Maven group ID.
(Required) Maven artifact type.
(Required) Maven version number.
other
artifactsother
artifacts represent any kind of file that is downloaded and added to a container image.
If you want to use a specific name for the artifact in the resulting container image, use the fileName
field.
If a file name is not specified, the file is named based on the URL hash.
Additionally, you can specify a SHA-512 checksum of the artifact. If specified, Strimzi will verify the checksum of the artifact while building the new container image.
other
artifactapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output:
#...
plugins:
- name: my-plugin
artifacts:
- type: other (1)
url: https://my-domain.tld/my-other-file.ext (2)
sha512sum: 589...ab4 (3)
fileName: name-the-file.ext (4)
#...
(Required) Type of artifact.
(Required) URL from which the artifact is downloaded.
(Optional) SHA-512 checksum to verify the artifact.
(Optional) The name under which the file is stored in the resulting container image.
Build
schema propertiesProperty | Description |
---|---|
output |
Configures where should the newly built image be stored. Required. The type depends on the value of the |
resources |
CPU and memory resources to reserve for the build. For more information, see the external documentation for core/v1 resourcerequirements. |
plugins |
List of connector plugins which should be added to the Kafka Connect. Required. |
|
DockerOutput
schema referenceUsed in: Build
The type
property is a discriminator that distinguishes use of the DockerOutput
type from ImageStreamOutput
.
It must have the value docker
for the type DockerOutput
.
Property | Description |
---|---|
image |
The full name which should be used for tagging and pushing the newly built image. For example |
string |
|
pushSecret |
Container Registry Secret with the credentials for pushing the newly built image. |
string |
|
additionalKanikoOptions |
Configures additional options which will be passed to the Kaniko executor when building the new Connect image. Allowed options are: --customPlatform, --insecure, --insecure-pull, --insecure-registry, --log-format, --log-timestamp, --registry-mirror, --reproducible, --single-snapshot, --skip-tls-verify, --skip-tls-verify-pull, --skip-tls-verify-registry, --verbosity, --snapshotMode, --use-new-run. These options will be used only on Kubernetes where the Kaniko executor is used. They will be ignored on OpenShift. The options are described in the Kaniko GitHub repository. Changing this field does not trigger new build of the Kafka Connect image. |
string array |
|
type |
Must be |
string |
ImageStreamOutput
schema referenceUsed in: Build
The type
property is a discriminator that distinguishes use of the ImageStreamOutput
type from DockerOutput
.
It must have the value imagestream
for the type ImageStreamOutput
.
Property | Description |
---|---|
image |
The name and tag of the ImageStream where the newly built image will be pushed. For example |
string |
|
type |
Must be |
string |
Plugin
schema referenceUsed in: Build
Property | Description |
---|---|
name |
The unique name of the connector plugin. Will be used to generate the path where the connector artifacts will be stored. The name has to be unique within the KafkaConnect resource. The name has to follow the following pattern: |
string |
|
artifacts |
List of artifacts which belong to this connector plugin. Required. |
|
JarArtifact
schema referenceUsed in: Plugin
Property | Description |
---|---|
url |
URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for |
string |
|
sha512sum |
SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the |
string |
|
insecure |
By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to |
boolean |
|
type |
Must be |
string |
TgzArtifact
schema referenceUsed in: Plugin
Property | Description |
---|---|
url |
URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for |
string |
|
sha512sum |
SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the |
string |
|
insecure |
By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to |
boolean |
|
type |
Must be |
string |
ZipArtifact
schema referenceUsed in: Plugin
Property | Description |
---|---|
url |
URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for |
string |
|
sha512sum |
SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the |
string |
|
insecure |
By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to |
boolean |
|
type |
Must be |
string |
MavenArtifact
schema referenceUsed in: Plugin
The type
property is a discriminator that distinguishes use of the MavenArtifact
type from JarArtifact
, TgzArtifact
, ZipArtifact
, OtherArtifact
.
It must have the value maven
for the type MavenArtifact
.
Property | Description |
---|---|
repository |
Maven repository to download the artifact from. Applicable to the |
string |
|
group |
Maven group id. Applicable to the |
string |
|
artifact |
Maven artifact id. Applicable to the |
string |
|
version |
Maven version number. Applicable to the |
string |
|
type |
Must be |
string |
OtherArtifact
schema referenceUsed in: Plugin
Property | Description |
---|---|
url |
URL of the artifact which will be downloaded. Strimzi does not do any security scanning of the downloaded artifacts. For security reasons, you should first verify the artifacts manually and configure the checksum verification to make sure the same artifact is used in the automated build. Required for |
string |
|
sha512sum |
SHA512 checksum of the artifact. Optional. If specified, the checksum will be verified while building the new container. If not specified, the downloaded artifact will not be verified. Not applicable to the |
string |
|
fileName |
Name under which the artifact will be stored. |
string |
|
insecure |
By default, connections using TLS are verified to check they are secure. The server certificate used must be valid, trusted, and contain the server name. By setting this option to |
boolean |
|
type |
Must be |
string |
KafkaConnectStatus
schema referenceUsed in: KafkaConnect
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
url |
The URL of the REST API endpoint for managing and monitoring Kafka Connect connectors. |
string |
|
connectorPlugins |
The list of connector plugins available in this Kafka Connect deployment. |
|
|
labelSelector |
Label selector for pods providing this resource. |
string |
|
replicas |
The current number of pods being used to provide this resource. |
integer |
ConnectorPlugin
schema referenceUsed in: KafkaConnectStatus
, KafkaMirrorMaker2Status
Property | Description |
---|---|
type |
The type of the connector plugin. The available types are |
string |
|
version |
The version of the connector plugin. |
string |
|
class |
The class of the connector plugin. |
string |
KafkaTopic
schema referenceProperty | Description |
---|---|
spec |
The specification of the topic. |
status |
The status of the topic. |
KafkaTopicSpec
schema referenceUsed in: KafkaTopic
Property | Description |
---|---|
partitions |
The number of partitions the topic should have. This cannot be decreased after topic creation. It can be increased after topic creation, but it is important to understand the consequences that has, especially for topics with semantic partitioning. When absent this will default to the broker configuration for |
integer |
|
replicas |
The number of replicas the topic should have. When absent this will default to the broker configuration for |
integer |
|
config |
The topic configuration. |
map |
|
topicName |
The name of the topic. When absent this will default to the metadata.name of the topic. It is recommended to not set this unless the topic name is not a valid Kubernetes resource name. |
string |
KafkaTopicStatus
schema referenceUsed in: KafkaTopic
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
topicName |
Topic name. |
string |
KafkaUser
schema referenceProperty | Description |
---|---|
spec |
The specification of the user. |
status |
The status of the Kafka User. |
KafkaUserSpec
schema referenceUsed in: KafkaUser
Property | Description |
---|---|
authentication |
Authentication mechanism enabled for this Kafka user. The supported authentication mechanisms are
Authentication is optional. If authentication is not configured, no credentials are generated. ACLs and quotas set for the user are configured in the |
|
|
authorization |
Authorization rules for this Kafka user. The type depends on the value of the |
quotas |
Quotas on requests to control the broker resources used by clients. Network bandwidth and request rate quotas can be enforced.Kafka documentation for Kafka User quotas can be found at http://kafka.apache.org/documentation/#design_quotas. |
template |
Template to specify how Kafka User |
KafkaUserTlsClientAuthentication
schema referenceUsed in: KafkaUserSpec
The type
property is a discriminator that distinguishes use of the KafkaUserTlsClientAuthentication
type from KafkaUserTlsExternalClientAuthentication
, KafkaUserScramSha512ClientAuthentication
.
It must have the value tls
for the type KafkaUserTlsClientAuthentication
.
Property | Description |
---|---|
type |
Must be |
string |
KafkaUserTlsExternalClientAuthentication
schema referenceUsed in: KafkaUserSpec
The type
property is a discriminator that distinguishes use of the KafkaUserTlsExternalClientAuthentication
type from KafkaUserTlsClientAuthentication
, KafkaUserScramSha512ClientAuthentication
.
It must have the value tls-external
for the type KafkaUserTlsExternalClientAuthentication
.
Property | Description |
---|---|
type |
Must be |
string |
KafkaUserScramSha512ClientAuthentication
schema referenceUsed in: KafkaUserSpec
The type
property is a discriminator that distinguishes use of the KafkaUserScramSha512ClientAuthentication
type from KafkaUserTlsClientAuthentication
, KafkaUserTlsExternalClientAuthentication
.
It must have the value scram-sha-512
for the type KafkaUserScramSha512ClientAuthentication
.
Property | Description |
---|---|
password |
Specify the password for the user. If not set, a new password is generated by the User Operator. |
type |
Must be |
string |
Password
schema referenceProperty | Description |
---|---|
valueFrom |
Secret from which the password should be read. |
PasswordSource
schema referenceUsed in: Password
Property | Description |
---|---|
secretKeyRef |
Selects a key of a Secret in the resource’s namespace. For more information, see the external documentation for core/v1 secretkeyselector. |
KafkaUserAuthorizationSimple
schema referenceUsed in: KafkaUserSpec
The type
property is a discriminator that distinguishes use of the KafkaUserAuthorizationSimple
type from other subtypes which may be added in the future.
It must have the value simple
for the type KafkaUserAuthorizationSimple
.
Property | Description |
---|---|
type |
Must be |
string |
|
acls |
List of ACL rules which should be applied to this user. |
|
AclRule
schema referenceUsed in: KafkaUserAuthorizationSimple
Configures access control rules for a KafkaUser
when brokers are using the AclAuthorizer
.
KafkaUser
configuration with authorizationapiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
# ...
authorization:
type: simple
acls:
- resource:
type: topic
name: my-topic
patternType: literal
operations:
- Read
- Describe
- resource:
type: group
name: my-group
patternType: prefix
operations:
- Read
resource
Use the resource
property to specify the resource that the rule applies to.
Simple authorization supports four resource types, which are specified in the type
property:
Topics (topic
)
Consumer Groups (group
)
Clusters (cluster
)
Transactional IDs (transactionalId
)
For Topic, Group, and Transactional ID resources you can specify the name of the resource the rule applies to in the name
property.
Cluster type resources have no name.
A name is specified as a literal
or a prefix
using the patternType
property.
Literal names are taken exactly as they are specified in the name
field.
Prefix names use the name
value as a prefix and then apply the rule to all resources with names starting with that value.
When patternType
is set as literal
, you can set the name to *
to indicate that the rule applies to all resources.
acls:
- resource:
type: topic
name: "*"
patternType: literal
operations:
- Read
type
The type
of rule, which is to allow
or deny
(not currently supported) an operations.
The type
field is optional.
If type
is unspecified, the ACL rule is treated as an allow
rule.
operations
Specify a list of operations
for the rule to allow or deny.
The following operations are supported:
Read
Write
Delete
Alter
Describe
All
IdempotentWrite
ClusterAction
Create
AlterConfigs
DescribeConfigs
Only certain operations work with each resource.
For more details about AclAuthorizer
, ACLs and supported combinations of resources and operations, see Authorization and ACLs.
host
Use the host
property to specify a remote host from which the rule is allowed or denied.
Use an asterisk (*
) to allow or deny the operation from all hosts.
The host
field is optional. If host
is unspecified, the *
value is used by default.
AclRule
schema propertiesProperty | Description |
---|---|
host |
The host from which the action described in the ACL rule is allowed or denied. |
string |
|
operation |
The |
string (one of [Read, Write, Delete, Alter, Describe, All, IdempotentWrite, ClusterAction, Create, AlterConfigs, DescribeConfigs]) |
|
operations |
List of operations which will be allowed or denied. Supported operations are: Read, Write, Create, Delete, Alter, Describe, ClusterAction, AlterConfigs, DescribeConfigs, IdempotentWrite and All. |
string (one or more of [Read, Write, Delete, Alter, Describe, All, IdempotentWrite, ClusterAction, Create, AlterConfigs, DescribeConfigs]) array |
|
resource |
Indicates the resource for which given ACL rule applies. The type depends on the value of the |
|
|
type |
The type of the rule. Currently the only supported type is |
string (one of [allow, deny]) |
AclRuleTopicResource
schema referenceUsed in: AclRule
The type
property is a discriminator that distinguishes use of the AclRuleTopicResource
type from AclRuleGroupResource
, AclRuleClusterResource
, AclRuleTransactionalIdResource
.
It must have the value topic
for the type AclRuleTopicResource
.
Property | Description |
---|---|
type |
Must be |
string |
|
name |
Name of resource for which given ACL rule applies. Can be combined with |
string |
|
patternType |
Describes the pattern used in the resource field. The supported types are |
string (one of [prefix, literal]) |
AclRuleGroupResource
schema referenceUsed in: AclRule
The type
property is a discriminator that distinguishes use of the AclRuleGroupResource
type from AclRuleTopicResource
, AclRuleClusterResource
, AclRuleTransactionalIdResource
.
It must have the value group
for the type AclRuleGroupResource
.
Property | Description |
---|---|
type |
Must be |
string |
|
name |
Name of resource for which given ACL rule applies. Can be combined with |
string |
|
patternType |
Describes the pattern used in the resource field. The supported types are |
string (one of [prefix, literal]) |
AclRuleClusterResource
schema referenceUsed in: AclRule
The type
property is a discriminator that distinguishes use of the AclRuleClusterResource
type from AclRuleTopicResource
, AclRuleGroupResource
, AclRuleTransactionalIdResource
.
It must have the value cluster
for the type AclRuleClusterResource
.
Property | Description |
---|---|
type |
Must be |
string |
AclRuleTransactionalIdResource
schema referenceUsed in: AclRule
The type
property is a discriminator that distinguishes use of the AclRuleTransactionalIdResource
type from AclRuleTopicResource
, AclRuleGroupResource
, AclRuleClusterResource
.
It must have the value transactionalId
for the type AclRuleTransactionalIdResource
.
Property | Description |
---|---|
type |
Must be |
string |
|
name |
Name of resource for which given ACL rule applies. Can be combined with |
string |
|
patternType |
Describes the pattern used in the resource field. The supported types are |
string (one of [prefix, literal]) |
KafkaUserQuotas
schema referenceUsed in: KafkaUserSpec
Kafka allows a user to set quotas
to control the use of resources by clients.
quotas
You can configure your clients to use the following types of quotas:
Network usage quotas specify the byte rate threshold for each group of clients sharing a quota.
CPU utilization quotas specify a window for broker requests from clients. The window is the percentage of time for clients to make requests. A client makes requests on the I/O threads and network threads of the broker.
Partition mutation quotas limit the number of partition mutations which clients are allowed to make per second.
A partition mutation quota prevents Kafka clusters from being overwhelmed by concurrent topic operations. Partition mutations occur in response to the following types of user requests:
Creating partitions for a new topic
Adding partitions to an existing topic
Deleting partitions from a topic
You can configure a partition mutation quota to control the rate at which mutations are accepted for user requests.
Using quotas for Kafka clients might be useful in a number of situations. Consider a wrongly configured Kafka producer which is sending requests at too high a rate. Such misconfiguration can cause a denial of service to other clients, so the problematic client ought to be blocked. By using a network limiting quota, it is possible to prevent this situation from significantly impacting other clients.
Strimzi supports user-level quotas, but not client-level quotas.
spec:
quotas:
producerByteRate: 1048576
consumerByteRate: 2097152
requestPercentage: 55
controllerMutationRate: 10
For more information about Kafka user quotas, refer to the Apache Kafka documentation.
KafkaUserQuotas
schema propertiesProperty | Description |
---|---|
consumerByteRate |
A quota on the maximum bytes per-second that each client group can fetch from a broker before the clients in the group are throttled. Defined on a per-broker basis. |
integer |
|
controllerMutationRate |
A quota on the rate at which mutations are accepted for the create topics request, the create partitions request and the delete topics request. The rate is accumulated by the number of partitions created or deleted. |
number |
|
producerByteRate |
A quota on the maximum bytes per-second that each client group can publish to a broker before the clients in the group are throttled. Defined on a per-broker basis. |
integer |
|
requestPercentage |
A quota on the maximum CPU utilization of each client group as a percentage of network and I/O threads. |
integer |
KafkaUserTemplate
schema referenceUsed in: KafkaUserSpec
Specify additional labels and annotations for the secret created by the User Operator.
KafkaUserTemplate
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: tls
template:
secret:
metadata:
labels:
label1: value1
annotations:
anno1: value1
# ...
KafkaUserTemplate
schema propertiesProperty | Description |
---|---|
secret |
Template for KafkaUser resources. The template allows users to specify how the |
KafkaUserStatus
schema referenceUsed in: KafkaUser
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
username |
Username. |
string |
|
secret |
The name of |
string |
KafkaMirrorMaker
schema referenceThe type KafkaMirrorMaker
has been deprecated.
Please use KafkaMirrorMaker2
instead.
Property | Description |
---|---|
spec |
The specification of Kafka MirrorMaker. |
status |
The status of Kafka MirrorMaker. |
KafkaMirrorMakerSpec
schema referenceUsed in: KafkaMirrorMaker
Configures Kafka MirrorMaker.
include
Use the include
property to configure a list of topics that Kafka MirrorMaker mirrors from the source to the target Kafka cluster.
The property allows any regular expression from the simplest case with a single topic name to complex patterns.
For example, you can mirror topics A and B using A|B
or all topics using *
.
You can also pass multiple regular expressions separated by commas to the Kafka MirrorMaker.
KafkaMirrorMakerConsumerSpec
and KafkaMirrorMakerProducerSpec
Use the KafkaMirrorMakerConsumerSpec
and KafkaMirrorMakerProducerSpec
to configure source (consumer) and target (producer) clusters.
Kafka MirrorMaker always works together with two Kafka clusters (source and target).
To establish a connection, the bootstrap servers for the source and the target Kafka clusters are specified as comma-separated lists of HOSTNAME:PORT
pairs.
Each comma-separated list contains one or more Kafka brokers or a Service
pointing to Kafka brokers specified as a HOSTNAME:PORT
pair.
logging
Kafka MirrorMaker has its own configurable logger:
mirrormaker.root.logger
MirrorMaker uses the Apache log4j
logger implementation.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the logging configuration is described using log4j.properties
. Both logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is not set, upper-level logger settings are inherited for that logger.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
# ...
logging:
type: inline
loggers:
mirrormaker.root.logger: "INFO"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: mirror-maker-log4j.properties
# ...
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
KafkaMirrorMakerSpec
schema propertiesProperty | Description |
---|---|
version |
The Kafka MirrorMaker version. Defaults to 3.4.0. Consult the documentation to understand the process required to upgrade or downgrade the version. |
string |
|
replicas |
The number of pods in the |
integer |
|
image |
The docker image for the pods. |
string |
|
consumer |
Configuration of source cluster. |
producer |
Configuration of target cluster. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
whitelist |
The |
string |
|
include |
List of topics which are included for mirroring. This option allows any regular expression using Java-style regular expressions. Mirroring two topics named A and B is achieved by using the expression |
string |
|
jvmOptions |
JVM Options for pods. |
logging |
Logging configuration for MirrorMaker. The type depends on the value of the |
metricsConfig |
Metrics configuration. The type depends on the value of the |
tracing |
The configuration of tracing in Kafka MirrorMaker. The type depends on the value of the |
template |
Template to specify how Kafka MirrorMaker resources, |
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
KafkaMirrorMakerConsumerSpec
schema referenceUsed in: KafkaMirrorMakerSpec
Configures a MirrorMaker consumer.
numStreams
Use the consumer.numStreams
property to configure the number of streams for the consumer.
You can increase the throughput in mirroring topics by increasing the number of consumer threads. Consumer threads belong to the consumer group specified for Kafka MirrorMaker. Topic partitions are assigned across the consumer threads, which consume messages in parallel.
offsetCommitInterval
Use the consumer.offsetCommitInterval
property to configure an offset auto-commit interval for the consumer.
You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has consumed data from the source Kafka cluster. The time interval is set in milliseconds, with a default value of 60,000.
config
Use the consumer.config
properties to configure Kafka options for the consumer.
The config
property contains the Kafka MirrorMaker consumer configuration options as keys, with values set in one of the following JSON types:
String
Number
Boolean
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
Exceptions
You can specify and configure the options listed in the Apache Kafka configuration documentation for consumers.
However, there are exceptions for options automatically configured and managed directly by Strimzi related to:
Kafka cluster bootstrap address
Security (encryption, authentication, and authorization)
Consumer group identifier
Interceptors
Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
bootstrap.servers
group.id
interceptor.classes
sasl.
security.
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other options are passed to Kafka MirrorMaker.
Important
|
The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might become unstable.
In such cases, the configuration in the KafkaMirrorMaker.spec.consumer.config object should be fixed and the Cluster Operator will roll out the new configuration for Kafka MirrorMaker.
|
groupId
Use the consumer.groupId
property to configure a consumer group identifier for the consumer.
Kafka MirrorMaker uses a Kafka consumer to consume messages, behaving like any other Kafka consumer client. Messages consumed from the source Kafka cluster are mirrored to a target Kafka cluster. A group identifier is required, as the consumer needs to be part of a consumer group for the assignment of partitions.
KafkaMirrorMakerConsumerSpec
schema propertiesProperty | Description |
---|---|
numStreams |
Specifies the number of consumer stream threads to create. |
integer |
|
offsetCommitInterval |
Specifies the offset auto-commit interval in ms. Default value is 60000. |
integer |
|
bootstrapServers |
A list of host:port pairs for establishing the initial connection to the Kafka cluster. |
string |
|
groupId |
A unique string that identifies the consumer group this consumer belongs to. |
string |
|
authentication |
Authentication configuration for connecting to the cluster. The type depends on the value of the |
|
|
config |
The MirrorMaker consumer config. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, group.id, sasl., security., interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
|
tls |
TLS configuration for connecting MirrorMaker to the cluster. |
KafkaMirrorMakerProducerSpec
schema referenceUsed in: KafkaMirrorMakerSpec
Configures a MirrorMaker producer.
abortOnSendFailure
Use the producer.abortOnSendFailure
property to configure how to handle message send failure from the producer.
By default, if an error occurs when sending a message from Kafka MirrorMaker to a Kafka cluster:
The Kafka MirrorMaker container is terminated in Kubernetes.
The container is then recreated.
If the abortOnSendFailure
option is set to false
, message sending errors are ignored.
config
Use the producer.config
properties to configure Kafka options for the producer.
The config
property contains the Kafka MirrorMaker producer configuration options as keys, with values set in one of the following JSON types:
String
Number
Boolean
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
Exceptions
You can specify and configure the options listed in the Apache Kafka configuration documentation for producers.
However, there are exceptions for options automatically configured and managed directly by Strimzi related to:
Kafka cluster bootstrap address
Security (encryption, authentication, and authorization)
Interceptors
Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
bootstrap.servers
interceptor.classes
sasl.
security.
When a forbidden option is present in the config
property, it is ignored and a warning message is printed to the Cluster Operator log file.
All other options are passed to Kafka MirrorMaker.
Important
|
The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might become unstable.
In such cases, the configuration in the KafkaMirrorMaker.spec.producer.config object should be fixed and the Cluster Operator will roll out the new configuration for Kafka MirrorMaker.
|
KafkaMirrorMakerProducerSpec
schema propertiesProperty | Description |
---|---|
bootstrapServers |
A list of host:port pairs for establishing the initial connection to the Kafka cluster. |
string |
|
abortOnSendFailure |
Flag to set the MirrorMaker to exit on a failed send. Default value is |
boolean |
|
authentication |
Authentication configuration for connecting to the cluster. The type depends on the value of the |
|
|
config |
The MirrorMaker producer config. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, sasl., security., interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
|
tls |
TLS configuration for connecting MirrorMaker to the cluster. |
KafkaMirrorMakerTemplate
schema referenceUsed in: KafkaMirrorMakerSpec
Property | Description |
---|---|
deployment |
Template for Kafka MirrorMaker |
pod |
Template for Kafka MirrorMaker |
podDisruptionBudget |
Template for Kafka MirrorMaker |
mirrorMakerContainer |
Template for Kafka MirrorMaker container. |
serviceAccount |
Template for the Kafka MirrorMaker service account. |
KafkaMirrorMakerStatus
schema referenceUsed in: KafkaMirrorMaker
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
labelSelector |
Label selector for pods providing this resource. |
string |
|
replicas |
The current number of pods being used to provide this resource. |
integer |
KafkaBridge
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka Bridge. |
status |
The status of the Kafka Bridge. |
KafkaBridgeSpec
schema referenceUsed in: KafkaBridge
Configures a Kafka Bridge cluster.
Configuration options relate to:
Kafka cluster bootstrap address
Security (Encryption, Authentication, and Authorization)
Consumer configuration
Producer configuration
HTTP configuration
logging
Kafka Bridge has its own configurable loggers:
logger.bridge
logger.<operation-id>
You can replace <operation-id>
in the logger.<operation-id>
logger to set log levels for specific operations:
createConsumer
deleteConsumer
subscribe
unsubscribe
poll
assign
commit
send
sendToPartition
seekToBeginning
seekToEnd
seek
healthy
ready
openapi
Each operation is defined according OpenAPI specification, and has a corresponding API endpoint through which the bridge receives requests from HTTP clients. You can change the log level on each endpoint to create fine-grained logging information about the incoming and outgoing HTTP requests.
Each logger has to be configured assigning it a name
as http.openapi.operation.<operation-id>
.
For example, configuring the logging level for the send
operation logger means defining the following:
logger.send.name = http.openapi.operation.send
logger.send.level = DEBUG
Kafka Bridge uses the Apache log4j2
logger implementation.
Loggers are defined in the log4j2.properties
file, which has the following default configuration for healthy
and ready
endpoints:
logger.healthy.name = http.openapi.operation.healthy
logger.healthy.level = WARN
logger.ready.name = http.openapi.operation.ready
logger.ready.level = WARN
The log level of all other operations is set to INFO
by default.
Use the logging
property to configure loggers and logger levels.
You can set the log levels by specifying the logger and level directly (inline) or use a custom (external) ConfigMap.
If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name
property to the name of the ConfigMap containing the external logging configuration.
The logging.valueFrom.configMapKeyRef.name
and logging.valueFrom.configMapKeyRef.key
properties are mandatory.
Default logging is used if the name
or key
is not set.
Inside the ConfigMap, the logging configuration is described using log4j.properties
.
For more information about log levels, see Apache logging services.
Here we see examples of inline
and external
logging.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
# ...
logging:
type: inline
loggers:
logger.bridge.level: "INFO"
# enabling DEBUG just for send operation
logger.send.name: "http.openapi.operation.send"
logger.send.level: "DEBUG"
# ...
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
# ...
logging:
type: external
valueFrom:
configMapKeyRef:
name: customConfigMap
key: bridge-logj42.properties
# ...
Any available loggers that are not configured have their level set to OFF
.
If the Kafka Bridge was deployed using the Cluster Operator, changes to Kafka Bridge logging levels are applied dynamically.
If you use external logging, a rolling update is triggered when logging appenders are changed.
Garbage collector logging can also be enabled (or disabled) using the jvmOptions
property.
KafkaBridgeSpec
schema propertiesProperty | Description |
---|---|
replicas |
The number of pods in the |
integer |
|
image |
The docker image for the pods. |
string |
|
bootstrapServers |
A list of host:port pairs for establishing the initial connection to the Kafka cluster. |
string |
|
tls |
TLS configuration for connecting Kafka Bridge to the cluster. |
authentication |
Authentication configuration for connecting to the cluster. The type depends on the value of the |
|
|
http |
The HTTP related configuration. |
adminClient |
Kafka AdminClient related configuration. |
consumer |
Kafka consumer related configuration. |
producer |
Kafka producer related configuration. |
resources |
CPU and memory resources to reserve. For more information, see the external documentation for core/v1 resourcerequirements. |
jvmOptions |
Currently not supported JVM Options for pods. |
logging |
Logging configuration for Kafka Bridge. The type depends on the value of the |
clientRackInitImage |
The image of the init container used for initializing the |
string |
|
rack |
Configuration of the node label which will be used as the client.rack consumer configuration. |
enableMetrics |
Enable the metrics for the Kafka Bridge. Default is false. |
boolean |
|
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
template |
Template for Kafka Bridge resources. The template allows users to specify how a |
tracing |
The configuration of tracing in Kafka Bridge. The type depends on the value of the |
KafkaBridgeHttpConfig
schema referenceUsed in: KafkaBridgeSpec
Configures HTTP access to a Kafka cluster for the Kafka Bridge.
The default HTTP configuration is for the Kafka Bridge to listen on port 8080.
cors
As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a HTTP mechanism that allows browser access to selected resources from more than one origin. To configure CORS, you define a list of allowed resource origins and HTTP access methods. For the origins, you can use a URL or a Java regular expression.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:
# ...
http:
port: 8080
cors:
allowedOrigins: "https://strimzi.io"
allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
# ...
KafkaBridgeHttpConfig
schema propertiesProperty | Description |
---|---|
port |
The port which is the server listening on. |
integer |
|
cors |
CORS configuration for the HTTP Bridge. |
KafkaBridgeHttpCors
schema referenceUsed in: KafkaBridgeHttpConfig
Property | Description |
---|---|
allowedOrigins |
List of allowed origins. Java regular expressions can be used. |
string array |
|
allowedMethods |
List of allowed HTTP methods. |
string array |
KafkaBridgeAdminClientSpec
schema referenceUsed in: KafkaBridgeSpec
Property | Description |
---|---|
config |
The Kafka AdminClient configuration used for AdminClient instances created by the bridge. |
map |
KafkaBridgeConsumerSpec
schema referenceUsed in: KafkaBridgeSpec
Configures consumer options for the Kafka Bridge as keys.
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the Apache Kafka configuration documentation for consumers with the exception of those options which are managed directly by Strimzi. Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
ssl.
sasl.
security.
bootstrap.servers
group.id
When one of the forbidden options is present in the config
property, it is ignored and a warning message will be printed to the Cluster Operator log file.
All other options will be passed to Kafka
Important
|
The Cluster Operator does not validate keys or values in the config object.
If an invalid configuration is provided, the Kafka Bridge cluster might not start or might become unstable.
Fix the configuration so that the Cluster Operator can roll out the new configuration to all Kafka Bridge nodes.
|
There are exceptions to the forbidden options.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:
# ...
consumer:
config:
auto.offset.reset: earliest
enable.auto.commit: true
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS
# ...
KafkaBridgeConsumerSpec
schema propertiesProperty | Description |
---|---|
config |
The Kafka consumer configuration used for consumer instances created by the bridge. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, group.id, sasl., security. (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
KafkaBridgeProducerSpec
schema referenceUsed in: KafkaBridgeSpec
Configures producer options for the Kafka Bridge as keys.
The values can be one of the following JSON types:
String
Number
Boolean
You can specify and configure the options listed in the Apache Kafka configuration documentation for producers with the exception of those options which are managed directly by Strimzi. Specifically, all configuration options with keys equal to or starting with one of the following strings are forbidden:
ssl.
sasl.
security.
bootstrap.servers
When one of the forbidden options is present in the config
property, it is ignored and a warning message will be printed to the Cluster Operator log file.
All other options will be passed to Kafka
Important
|
The Cluster Operator does not validate keys or values in the config object.
If an invalid configuration is provided, the Kafka Bridge cluster might not start or might become unstable.
Fix the configuration so that the Cluster Operator can roll out the new configuration to all Kafka Bridge nodes.
|
There are exceptions to the forbidden options.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:
# ...
producer:
config:
acks: 1
delivery.timeout.ms: 300000
ssl.cipher.suites: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
ssl.enabled.protocols: "TLSv1.2"
ssl.protocol: "TLSv1.2"
ssl.endpoint.identification.algorithm: HTTPS
# ...
KafkaBridgeProducerSpec
schema propertiesProperty | Description |
---|---|
config |
The Kafka producer configuration used for producer instances created by the bridge. Properties with the following prefixes cannot be set: ssl., bootstrap.servers, sasl., security. (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
KafkaBridgeTemplate
schema referenceUsed in: KafkaBridgeSpec
Property | Description |
---|---|
deployment |
Template for Kafka Bridge |
pod |
Template for Kafka Bridge |
apiService |
Template for Kafka Bridge API |
podDisruptionBudget |
Template for Kafka Bridge |
bridgeContainer |
Template for the Kafka Bridge container. |
clusterRoleBinding |
Template for the Kafka Bridge ClusterRoleBinding. |
serviceAccount |
Template for the Kafka Bridge service account. |
initContainer |
Template for the Kafka Bridge init container. |
KafkaBridgeStatus
schema referenceUsed in: KafkaBridge
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
url |
The URL at which external client applications can access the Kafka Bridge. |
string |
|
labelSelector |
Label selector for pods providing this resource. |
string |
|
replicas |
The current number of pods being used to provide this resource. |
integer |
KafkaConnector
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka Connector. |
status |
The status of the Kafka Connector. |
KafkaConnectorSpec
schema referenceUsed in: KafkaConnector
Property | Description |
---|---|
class |
The Class for the Kafka Connector. |
string |
|
tasksMax |
The maximum number of tasks for the Kafka Connector. |
integer |
|
autoRestart |
Automatic restart of connector and tasks configuration. |
config |
The Kafka Connector configuration. The following properties cannot be set: connector.class, tasks.max. |
map |
|
pause |
Whether the connector should be paused. Defaults to false. |
boolean |
AutoRestart
schema referenceConfigures automatic restarts for connectors and tasks that are in a FAILED
state.
When enabled, a back-off algorithm applies the automatic restart to each failed connector and its tasks.
The operator attempts an automatic restart on reconciliation.
If the first attempt fails, the operator makes up to six more attempts.
The duration between each restart attempt increases from 2 to 30 minutes.
After each restart, failed connectors and tasks transit from FAILED
to RESTARTING
.
If the restart fails after the final attempt, there is likely to be a problem with the connector configuration.
The connector and tasks remain in a FAILED
state and you have to restart them manually.
You can do this by annotating the KafKaConnector
custom resource with strimzi.io/restart: "true"
.
For Kafka Connect connectors, use the autoRestart
property of the KafkaConnector
resource to enable automatic restarts of failed connectors and tasks.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: my-source-connector
spec:
autoRestart:
enabled: true
For MirrorMaker 2.0, use the autoRestart
property of connectors in the KafkaMirrorMaker2
resource to enable automatic restarts of failed connectors and tasks.
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
name: my-mm2-cluster
spec:
mirrors:
- sourceConnector:
autoRestart:
enabled: true
# ...
heartbeatConnector:
autoRestart:
enabled: true
# ...
checkpointConnector:
autoRestart:
enabled: true
# ...
AutoRestart
schema propertiesProperty | Description |
---|---|
enabled |
Whether automatic restart for failed connectors and tasks should be enabled or disabled. |
boolean |
KafkaConnectorStatus
schema referenceUsed in: KafkaConnector
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
autoRestart |
The auto restart status. |
connectorStatus |
The connector status, as reported by the Kafka Connect REST API. |
map |
|
tasksMax |
The maximum number of tasks for the Kafka Connector. |
integer |
|
topics |
The list of topics used by the Kafka Connector. |
string array |
AutoRestartStatus
schema referenceUsed in: KafkaConnectorStatus
, KafkaMirrorMaker2Status
Property | Description |
---|---|
count |
The number of times the connector or task is restarted. |
integer |
|
connectorName |
The name of the connector being restarted. |
string |
|
lastRestartTimestamp |
The last time the automatic restart was attempted. The required format is 'yyyy-MM-ddTHH:mm:ssZ' in the UTC time zone. |
string |
KafkaMirrorMaker2
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka MirrorMaker 2.0 cluster. |
status |
The status of the Kafka MirrorMaker 2.0 cluster. |
KafkaMirrorMaker2Spec
schema referenceUsed in: KafkaMirrorMaker2
Property | Description |
---|---|
version |
The Kafka Connect version. Defaults to 3.4.0. Consult the user documentation to understand the process required to upgrade or downgrade the version. |
string |
|
replicas |
The number of pods in the Kafka Connect group. |
integer |
|
image |
The docker image for the pods. |
string |
|
connectCluster |
The cluster alias used for Kafka Connect. The alias must match a cluster in the list at |
string |
|
clusters |
Kafka clusters for mirroring. |
mirrors |
Configuration of the MirrorMaker 2.0 connectors. |
resources |
The maximum limits for CPU and memory resources and the requested initial resources. For more information, see the external documentation for core/v1 resourcerequirements. |
livenessProbe |
Pod liveness checking. |
readinessProbe |
Pod readiness checking. |
jvmOptions |
JVM Options for pods. |
jmxOptions |
JMX Options. |
logging |
Logging configuration for Kafka Connect. The type depends on the value of the |
clientRackInitImage |
The image of the init container used for initializing the |
string |
|
rack |
Configuration of the node label which will be used as the |
tracing |
The configuration of tracing in Kafka Connect. The type depends on the value of the |
template |
Template for Kafka Connect and Kafka Mirror Maker 2 resources. The template allows users to specify how the |
externalConfiguration |
Pass data from Secrets or ConfigMaps to the Kafka Connect pods and use them to configure connectors. |
metricsConfig |
Metrics configuration. The type depends on the value of the |
KafkaMirrorMaker2ClusterSpec
schema referenceUsed in: KafkaMirrorMaker2Spec
Configures Kafka clusters for mirroring.
config
Use the config
properties to configure Kafka options.
Standard Apache Kafka configuration may be provided, restricted to those properties not managed directly by Strimzi.
For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties.
You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.
KafkaMirrorMaker2ClusterSpec
schema propertiesProperty | Description |
---|---|
alias |
Alias used to reference the Kafka cluster. |
string |
|
bootstrapServers |
A comma-separated list of |
string |
|
tls |
TLS configuration for connecting MirrorMaker 2.0 connectors to a cluster. |
authentication |
Authentication configuration for connecting to the cluster. The type depends on the value of the |
|
|
config |
The MirrorMaker 2.0 cluster config. Properties with the following prefixes cannot be set: ssl., sasl., security., listeners, plugin.path, rest., bootstrap.servers, consumer.interceptor.classes, producer.interceptor.classes (with the exception of: ssl.endpoint.identification.algorithm, ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols). |
map |
KafkaMirrorMaker2MirrorSpec
schema referenceUsed in: KafkaMirrorMaker2Spec
Property | Description |
---|---|
sourceCluster |
The alias of the source cluster used by the Kafka MirrorMaker 2.0 connectors. The alias must match a cluster in the list at |
string |
|
targetCluster |
The alias of the target cluster used by the Kafka MirrorMaker 2.0 connectors. The alias must match a cluster in the list at |
string |
|
sourceConnector |
The specification of the Kafka MirrorMaker 2.0 source connector. |
heartbeatConnector |
The specification of the Kafka MirrorMaker 2.0 heartbeat connector. |
checkpointConnector |
The specification of the Kafka MirrorMaker 2.0 checkpoint connector. |
topicsPattern |
A regular expression matching the topics to be mirrored, for example, "topic1|topic2|topic3". Comma-separated lists are also supported. |
string |
|
topicsBlacklistPattern |
The |
string |
|
topicsExcludePattern |
A regular expression matching the topics to exclude from mirroring. Comma-separated lists are also supported. |
string |
|
groupsPattern |
A regular expression matching the consumer groups to be mirrored. Comma-separated lists are also supported. |
string |
|
groupsBlacklistPattern |
The |
string |
|
groupsExcludePattern |
A regular expression matching the consumer groups to exclude from mirroring. Comma-separated lists are also supported. |
string |
KafkaMirrorMaker2ConnectorSpec
schema referenceUsed in: KafkaMirrorMaker2MirrorSpec
Property | Description |
---|---|
tasksMax |
The maximum number of tasks for the Kafka Connector. |
integer |
|
config |
The Kafka Connector configuration. The following properties cannot be set: connector.class, tasks.max. |
map |
|
autoRestart |
Automatic restart of connector and tasks configuration. |
pause |
Whether the connector should be paused. Defaults to false. |
boolean |
KafkaMirrorMaker2Status
schema referenceUsed in: KafkaMirrorMaker2
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
url |
The URL of the REST API endpoint for managing and monitoring Kafka Connect connectors. |
string |
|
autoRestartStatuses |
List of MirrorMaker 2.0 connector auto restart statuses. |
|
|
connectorPlugins |
The list of connector plugins available in this Kafka Connect deployment. |
|
|
connectors |
List of MirrorMaker 2.0 connector statuses, as reported by the Kafka Connect REST API. |
map array |
|
labelSelector |
Label selector for pods providing this resource. |
string |
|
replicas |
The current number of pods being used to provide this resource. |
integer |
KafkaRebalance
schema referenceProperty | Description |
---|---|
spec |
The specification of the Kafka rebalance. |
status |
The status of the Kafka rebalance. |
KafkaRebalanceSpec
schema referenceUsed in: KafkaRebalance
Property | Description |
---|---|
mode |
Mode to run the rebalancing. The supported modes are
|
string (one of [remove-brokers, full, add-brokers]) |
|
brokers |
The list of newly added brokers in case of scaling up or the ones to be removed in case of scaling down to use for rebalancing. This list can be used only with rebalancing mode |
integer array |
|
goals |
A list of goals, ordered by decreasing priority, to use for generating and executing the rebalance proposal. The supported goals are available at https://github.com/linkedin/cruise-control#goals. If an empty goals list is provided, the goals declared in the default.goals Cruise Control configuration parameter are used. |
string array |
|
skipHardGoalCheck |
Whether to allow the hard goals specified in the Kafka CR to be skipped in optimization proposal generation. This can be useful when some of those hard goals are preventing a balance solution being found. Default is false. |
boolean |
|
rebalanceDisk |
Enables intra-broker disk balancing, which balances disk space utilization between disks on the same broker. Only applies to Kafka deployments that use JBOD storage with multiple disks. When enabled, inter-broker balancing is disabled. Default is false. |
boolean |
|
excludedTopics |
A regular expression where any matching topics will be excluded from the calculation of optimization proposals. This expression will be parsed by the java.util.regex.Pattern class; for more information on the supported format consult the documentation for that class. |
string |
|
concurrentPartitionMovementsPerBroker |
The upper bound of ongoing partition replica movements going into/out of each broker. Default is 5. |
integer |
|
concurrentIntraBrokerPartitionMovements |
The upper bound of ongoing partition replica movements between disks within each broker. Default is 2. |
integer |
|
concurrentLeaderMovements |
The upper bound of ongoing partition leadership movements. Default is 1000. |
integer |
|
replicationThrottle |
The upper bound, in bytes per second, on the bandwidth used to move replicas. There is no limit by default. |
integer |
|
replicaMovementStrategies |
A list of strategy class names used to determine the execution order for the replica movements in the generated optimization proposal. By default BaseReplicaMovementStrategy is used, which will execute the replica movements in the order that they were generated. |
string array |
KafkaRebalanceStatus
schema referenceUsed in: KafkaRebalance
Property | Description |
---|---|
conditions |
List of status conditions. |
|
|
observedGeneration |
The generation of the CRD that was last reconciled by the operator. |
integer |
|
sessionId |
The session identifier for requests to Cruise Control pertaining to this KafkaRebalance resource. This is used by the Kafka Rebalance operator to track the status of ongoing rebalancing operations. |
string |
|
optimizationResult |
A JSON object describing the optimization result. |
map |